Meta-omics, a new approach to recognition of our environment

Document Type : Analytic Review

Authors

1 Department of Soil Science, Faculty of Agriculture, Bu-Ali Sina University of Hamedan, Iran

2 Department of Soil science, Faculty of Agriculture, Shahed University, Tehran, Iran

3 Department of Basic Medical Sciences, Isfahan (Khorasgan) branch, Islamic Azad University, Isfahan, Iran.

4 Department of Agricultural Biotechnology, Faculty of Agriculture, Bu-Ali Sina University of Hamedan, Iran.

Abstract
The number of microbial cells on the planet is much larger than the stars we know in the galaxies. However, the microbial diversity and their ecological network remain unknown, they have key roles on the Earth's ecosystems. Omics technologies such as metagenomics provide tools for recognizing a large part of these cryptic forms of life accurately, which are much higher than the uncultivated majority. One example is the diversity of the Vampyrellids from protista and micro-eukaryotes. Using meta-omics technologies, it found that the diversity within this one group equals that of the entire kingdom of fungi, and they are found in all corners of nature, from the oceans to terrestrial soils. It is noticeable that they are only one of the seven protista groups. In this article, in addition to introducing Omics technologies, some of big relevant projects and their results have also been discussed covering all of the Earth's environment. Metagenomics is the direct sequencing and characterization of genes and genomes present in complex microbial ecosystems (e.g. metagenomes). Viromics is the research of viral metagenome. In metatranscriptomics the mRNA is being analyzed which is due to its notoriously labile nature in environmental samples, its conservation and analyzing are the main challenges in this omics. Identification and measurement of various proteins that can directly measure microbial activity is performed in metaproteomics. Environmental metabolomics includes the study of low molecular weight metabolites generated from interactions between microorganisms, such as small eukaryotes, plants, animals, predators, abiotic stresses, and other stimulants.

Keywords

Subjects


(1) فروزان، ا. 1396. جستجوی ژن‌های مقاومت به فلز سنگین در متاژنوم معادن آهن استان سمنان. پایان‌نامه دکتری بیوتکنولوژی کشاورزی. پژوهشگاه ملی مهندسی ژنتیک و زیست‌فناوری.
(2) طهمورث‌پور، آ.، صالحی، ر.، کسری‌کرمانشاهی.، و اسلامی، گ. 1388. استخراج RNA از سلول‌های بیوفیلم استرپتوکوکوس موتانس. مجله میکروب‌شناسی پزشکی ایران، 4: 9-14.
(3) موسوی ملکی، م.س. 1391. بررسی تنوع میکروبی محیط اطراف معدن کرومیت فرومد در استان سمنان به روش متاژنومیکس. پایان‌نامه کارشناسی ارشد بیوتکنولوژی کشاورزی. دانشگاه پیام‌نور مرکز تهران شرق.
(4) میرزایی اصل، ا.، گودرزی، ص.، و خدائی، ل. 1394. تجزیه داده‌های زیستی (ابزارهای داده‌پردازی زیستی). انتشارات دانشگاه بوعلی‌سینا، همدان. 304 ص.
(5) همت‌جو، م.ح. 1396. متاژنومیکس؛ پرده‌برداری از رازهای سیاره‌ی میکروبی ما. انتشارات چاپار-اساطیر پارسی، تهران. 493 ص.
(6) همت‌جو، م.ح. 1397. بهره‌گیری از متاژنومیکس برای شناخت دگرگونی ریزجانداران در خاک‌های آلوده به فلزهای سنگین. پایان‌نامه دکتری بیولوژی و بیوتکنولوژی خاک. دانشگاه بوعلی‌سینا.
(7) همت‌جو، م.ح. صفری سنجانی، ع. ا.، میرزایی اصل، ا.، طهمورث‌پور، آ. 1397. بهره گیری از انگشت نگاری PCR-DGGE و تنفس خاک برای شناخت دگرگونی‌های باکتریایی در خاک های آلوده به فلزهای سنگین. مجله زیست‌شناسی میکروارگانیسم‌ها، 29: 56-41.
(8) Ajami, N.J., and Petrosino, J.F. 2015. Toward the human virome. In: Izard, J., and Rivera, M.C., editors. Metagenomics for microbiology. 3rd ed. Academic Press is an imprint of Elsevier, 32 Jamestown Road, London NW1 7BY, UK, pp. 112-134.
(9) Arpanahi AA, Feizian M, Mehdipourian G, and Namdar Khojasteh D. 2020. Arbuscular mycorrhizal fungi inoculation improve essential oil and physiological parameters and nutritional values of Thymus daenensis Celak and Thymus vulgaris L. under normal and drought stress conditions. Europian Journal of soil Biology, 3: 100:108.
(10) Castillo, E.D., and Izard, J. 2015. Metagenomics for Bacteriology. In: Izard, J., and Rivera, M.C., editors. Metagenomics for microbiology. 3rd ed. Academic Press is an imprint of Elsevier, 32 Jamestown Road, London NW1 7BY, UK, pp. 112-134.
(11) Fierer, N., Ladau, J., Clemente, J.C., Leff, J.W., Owens, S.M., Pollard, K.S., Knight, R., Gilbert, J.A., and McCulley, R.L. 2013. Reconstructing the Microbial Diversity and Function of Pre-Agricultural Tallgrass Prairie Soils in the United States. Science, 342: 621-624.
(12) Friedman, J., and Alm, E.J. 2012. Inferring correlation networks from genomic survey data. PLOS Computational Biology, 8: 1-11.
(13) Gibbons, S.M., Caporaso, J.G., Pirrungd, M., Fielde, D., Knight, R., and Gilbert, J.A. 2012. Evidence for a persistent microbial seed bank throughout the global ocean. Proceedings of the National Academy of Sciences of the United States of America. Ecology, 110: 4651-4655.
(14) Gilbert, A., Jansson, J.K., and Knight, R. 2014. The Earth Microbiome project: successes and aspirations. BMC Biology, 12: 1-4.
(15) Gittel, A., Barta, J., Kohoutova, I., Mikutta R., Owens, S., Gilbert, J., Schnecker, J., Wild, B., Hannisdal, B., Maerz, J., Lashchinskiy, N., Capek, P., Santruckova, H., Gentsch, N., Shibistova, O., Guggenberger, G., Richter, A., Torsvik, V., Schleper, C., and Urich, T. 2014. Distinct microbial communities associated with buried soils in the Siberian tundra. International Society for Microbial Ecology Journal, 8: 841-853.
(16) Gosalbes, M.J., Durban, A., Pignatelli, M., Abellan, J.J., Jimenez-Hernandez, N., and Perez-Cobas, A.E. 2011. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One, 6: 1-9.
(17) Handelsman, J., Rondon, M.R., Brady, S.F., Clardy, J., and Goodman, R.M. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 5: 248-249.
(18) Hazen, T.C., Rocha, A.M., and Techtmann, S.M. 2013. Advances in monitoring environmental microbes. Current Opinion in Biotechnology, 24: 526-533.
(19) Hemmat-jou, M. H., Safari-Sinegani, A. A., Mirzaie-Asl, A., and Tahmourespour, A. 2018. Analysis of Microbial Communities in Heavy Metals-Contaminated Soils Using Metagenomic Approach. Ecotoxicology, 1: 1-11.
(20) Hemmat-jou, M. H., Safari-Sinegani, A. A., Che, R., Mirzaie-Asl, A., Tahmourespour, A and Tahmasbian, I. 2020. Toxic trace element resistance genes and systems identified using the shotgun metagenomics approach in an Iranian mine soil. Environmental Science and Pollution Research, 1: 1-12.
(21) Hettich, R.L., Pan, C., Chorney, K., and Giannone, R.J. 2013. Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communites. Analytical Chemistry, 85: 4203-4214.
(22) HMP Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature, 486: 207-214.
(23) Hollister, E.B., Brooks, J.P., and Gentry, T.J. 2015. Bioinformation and ’Omic Approaches for Characterization of Environmental Microorganisms. In: Pepper, I.L., Gerba, C.P., and Gentry, T.J., editors. Environmental Microbiology, 3th ed. Academic Press is an imprint of Elsevier, 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA, pp. 482-505.
(24) Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40: 109-114.
(25) Karsenti, E., Acinas, S.G., Bork, P., Bowler, C., Vargas, C.D., Raes, J., Sullivan, M., Arendt, D., Benzoni, F., Claverie, J.M., Follows, M., Gorsky, G., Hingamp, P., Iudicone, D., Jaillon, O., Kandels-Lewis, S., Krzic, U., Not, F., Ogata, H., Pesant, S., Reynaud, E.G., Sardet, C., Sieracki, M.E., Speich, S., Velayoudon, D., Weissenbach, J., and Wincker, P. 2011. A Holistic Approach to Marine Eco-Systems Biology. PLoS Biology, 9: 1-5.
(26) Kim, S.I., Kim, J.Y., Yun, S.H., Kim, J.H., Lee, S.H., and Lee, C. 2004. Proteome analysis of Pseudomonas sp. K82 biodegradation pathways. Proteomics, 4: 3610-3621.
(27) Luo, W., and Brouwer, C. 2013. Pathview: An R/bioconductor package for pathway-based data integration and visualization. Bioinformatics, 29: 1830-1831.
(28) Luo, C., Tsementzi, D., Kyrpides, N., Read, T., and Konstantinidis, K.T. 2012. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One, 7, 1-12.
(29) McHardy, I., Goudarzi, M., Tong, M., Ruegger, P., Schwager, A.E., and Weger, J. 2013. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome, 2618: 1-17.
(30) Mueller, R.S., Dill, B.D., Pan, C., Belnap, C.P., Thomas, B.C., and VerBerkmoes, N.C. 2011, Proteome changes in the initial bacterial colonist during ecological succession in an acid mine drainage biofilm community. Environmental Microbiology, 13: 2279-2292.
(31) Myrold, D.D., and Nannipieri, P. Classical techniques versus omics approaches. 2014. In: Nannipieri, P., Pietramellara, G., and Renella, G., editors. Omics in Soil Science. 1st ed. Caister Academic Press, Portland, OR, pp. 179-187.
(32) Nicol, G.W., and Schleper, C. 2006. Ammonia-oxidising Chrenarchaeota: important players in the nitrogen cycle? Trends in Microbiology, 14: 207-212.
(33) Pir, P., Kirdar, B., Hayes, A., Onsan, Z.I., Ulgen, K., and Oliver, S. 2006. Integrative investigation of metabolic and transcriptomic data. BMC Bioinformatics, 7: 1-12.
(34) Ram, R.J., VerBerkmoes, N.C., Thelen, M.P., Tyson, G.W., Baker, B.J., and Blake, R.C. 2005. Community proteomics of a natural microbial biofilm. Science, 308: 1915-1920.
(35) Rivera, M.C., and Izard, J. 2015. Promises and Prospects of Microbiome Studies. In: Izard, J., and Rivera, M.C., editors. Metagenomics for microbiology. 3rd ed. Academic Press is an imprint of Elsevier, 32 Jamestown Road, London NW1 7BY, UK, pp. 144-159.
(36) Tahmourespour, A., Salehi, R., and Kasra-Kermanshahi, R., 2011. Lactobacillus acidophilus-derived biosurfactant effect on GTFB and GTFC expression level in Straptococcus mutants' biofilm cells. Brazilian Journal of Microbiology, 42: 330-339.
(37) Thies, J.E. 2015. Molecular Approaches to Studying the Soil Biota. In: Paul, E.A., editor. Soil Microbiology, Ecology, and Biochemistry, 4th ed. USA: Academic Press, Elsevier, pp. 151-185.
(38) Treusch, A.H., Leininger, S., Kletzin, A., Schuster, S.C., Klenk, H.P., and Schleper, C. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environmental Microbiology, 7: 1985-1995.
(39) Turner, T.R., Ramakrishnan, K., Walshaw, J., Heavens, D., Alston, M., Swarbreck, D., Osbourn, A., Grant, A., and Poole, P.S. 2013. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. International Society for Microbial Ecology Journal, 7: 2248-2258.
(40) Tyson, G.W., Chapman, J., Hugenholtz, P., Allen, E.E., Ram, R.J., and Richardson, P.M. 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 428: 37-43.
(41) Urich, T., Lanze´n, A., Qi, J., Huson, D.H., Schleper, C., and Schuster, S.C. 2008. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One, 3: 1-13.
(42) VerBerkmoes, N.C., Denef, V.J., Hettich, R.L., and Banfield, J.F. 2009. Functional analysis of natural microbial consortia using community proteomics. Nature Reviews Microbiology, 7: 196-205.
(43) Vetrovsky, T., and Baldrian, P. 2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One, 8: 1-10.