بررسی اثر تفاله های روغن کشی زیتون، کنجد، آفتابگردان بر روی تولید اسید های چرب در کشت نیمه باز مخمر یاروویا لیپولیتیکا

نوع مقاله : پژوهشی اصیل

نویسندگان

1 کارشناسی ارشد بیوتکنولوژی میکروبی، دانشگاه آزاد اسلامی واحد تهران شمال، دانشکده علوم زیستی، تهران، ایران.

2 استادیار گروه علوم زیستی، دانشگاه آزاد اسلامی واحد تهران شمال، دانشکده علوم زیستی، تهران، ایران.

3 دانشیار گروه علوم زیستی، دانشگاه صنعتی مالک اشتر، مجتمع شیمی و مهندسی شیمی، تهران، ایران

چکیده
در میان منابع روغن­ها (گیاهی، حیوانی، میکروارگانیسمی)، روغن میکروبی توجه بسیاری از محققان را به خود جلب کرده است. میکروارگانیسم­های روغنی قادر به تجمع 20 تا 80درصد لیپید در هر زیست ­توده خشک هستند. در میان میکروارگانیسم­های مختلف (باکتری­ها، میکروجلبک­ها، گونه­ های قارچی از جمله مخمرها) برخی از مخمرها بعنوان منبع برتر تولید روغن در نظر گرفته شده ­اند. Yarrowia lipolytica نمونه­ ای عالی از میکروارگانیسم­های روغنی با بازده بالای تولید چربی است. با استفاده از تفاله­ های روغن­ کشی ارزان، بومی و در دسترس، بعنوان بستر تولید، می­توان هزینه روغن تولید­شده توسط مخمرها را کاهش داد. روغن میکروبی تولید­ی برای مصارف دارویی، غذایی و آرایشی-بهداشتی کاربرد دارد. در این مطالعه، پلئومورفیسم Yarrowia lipolytica (ATCC 18942) در محیط­ های کشت مختلف به صورت میکروسکوپی بررسی شد. پس از کشت مخمر در محیط­ های حاوی تفاله­ های روغن­ کشی زیتون، کنجد و آفتابگردان، در شرایط کشت نیمه­ باز اسیدهای چرب تولید­شده، با استفاده از تکنیک GC-MS و FTIR بررسی شدند. محیط حاوی تفاله زیتون پس از بررسی نتایج انتخاب شد و لیپید میکروبی تولیدی در این محیط استخراج شد. سپس وزن خشک زیست­توده و چربی میکروبی اندازه گیری شد. نتایج حاصل نشان داد که اسیدهای چرب استخراج­ شده از محیط حاوی تفاله زیتون، شامل اولئیک اسید، پالمیتیک­ اسید، لینولئیک­ اسید و استئاریک اسید بود که این محیط بهترین میزان تولید اسیدهای چرب را در بین تفاله­ ها داشت. مقدار چربی میکروبی و وزن خشک به ترتیب 4/07 و 7/83 گرم/لیتر و بازده تولید چربی میکروبی 51/97درصد به دست آمد.

کلیدواژه‌ها

موضوعات


Yen, H. W., Hu, I. C., Chen, C. Y., Ho, S. H., Lee, D. J., and Chang, J. S. (2013). Microalgae-based biorefinery–from biofuels to natural products. Bioresource technology, 135, 166-174.
Ochsenreither, K., Glück, C., Stressler, T., Fischer, L., and Syldatk, C. (2016). Production strategies and applications of microbial single cell oils. Frontiers in microbiology, 7, 1539.
Tchakouteu, S. S., Kalantzi, O., Gardeli, C., Koutinas, A. A., Aggelis, G., and Papanikolaou, S. (2015). Lipid production by yeasts growing on biodiesel‐derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. Journal of Applied Microbiology, 118(4), 911-927.
Maina, S., Pateraki, C., Kopsahelis, N., Paramithiotis, S., Drosinos, E. H., Papanikolaou, S., and Koutinas, A. (2017). Microbial oil production from various carbon sources by newly isolated oleaginous yeasts. Engineering in Life Sciences, 17(3), 333-344.
Thevenieau, F., and Nicaud, J. M. (2013). Microorganisms as sources of oils. Ocl, 20, D603.
Gajdoš, P., Nicaud, J. M., and Čertík, M. (2017). Glycerol conversion into a single cell oil by engineered Yarrowia lipolytica. Engineering in Life Sciences, 17, 325-332.
Hackenschmidt, S., Bracharz, F., Daniel, R., Thürmer, A., Bruder, S., and Kabisch, J. (2019). Characterization of three Yarrowia lipolytica strains in respect to different cultivation temperatures and metabolite secretion. bioRxiv, 645242.
Ageitos, J. M., Vallejo, J. A., Veiga-Crespo, P., and Villa, T. G. (2011). Oily yeasts as oleaginous cell factories. Applied microbiology and biotechnology, 90, 1219-1227.
Mattana, P., Rosa, P., Poli, J., Richards, N., Daboit, T., Scroferneker, M. L., ... and Valente, P. (2014). Lipid profile and antimicrobial activity of microbial oils from 16 oleaginous yeasts isolated from artisanal cheese. Revista Brasileira de Biociências, 12, 121.
Beiranvand, Sh., Larypoor, M., and Norozi, J.(2019).Optimization of beta-carotene production of Rhodotorula mucilaginosa isolated from the waste leather factory.Journal of Microbial World,12,39-52.‎
Yang, Q., Zhang, H., Li, X., Wang, Z., Xu, Y., Ren, S., ... and Wang, H. (2013). Extracellular enzyme production and phylogenetic distribution of yeasts in wastewater treatment systems. Bioresource technology, 129, 264-273.
Zieniuk, B., and Fabiszewska, A. (2019). Yarrowia lipolytica: a beneficious yeast in biotechnology as a rare opportunistic fungal pathogen: a minireview. World Journal of Microbiology and Biotechnology, 35, 10.
Gonçalves, F. A. G., Colen, G., and Takahashi, J. A. (2014). Yarrowia lipolytica and its multiple applications in the biotechnological industry. The Scientific World Journal, 2014.
Cui, L., Morris, A., and Ghedin, E. (2013). The human mycobiome in health and disease. Genome medicine, 5, 63.
Ott, S. J., Kühbacher, T., Musfeldt, M., Rosenstiel, P., Hellmig, S., Rehman, A., ... and Schreiber, S. (2008). Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scandinavian journal of gastroenterology, 43, 831-841.
Gouba, N., and Drancourt, M. (2015). Digestive tract mycobiota: a source of infection. Medecine et maladies infectieuses, 45, 9-16.
Farias, M. A., Valoni, E., Castro, A., and Coelho, M. A. (2014). Lipase production by Yarrowia lipolytica in solid state fermentation using different agro industrial residues. Chemical engineering transactions, 38, 301-306.
Moftah, O. A., Grbavčić, S. Ž., Moftah, W. A., Luković, N. D., Prodanović, O. L., Jakovetić, S. M., and Knežević-Jugović, Z. D. (2013). Lipase production by Yarrowia lipolytica using olive oil processing wastes as substrates. Journal of the Serbian Chemical Society, 78, 781-794.
Domínguez, A., Ferminan, E., and Gaillardin, C. (2000). Yarrowia lipolytica: an organism amenable to genetic manipulation as a model for analyzing dimorphism in fungi. In Dimorphism in human pathogenic and apathogenic yeasts (Vol. 5, pp. 151-172). Karger Publishers.
Morales-Vargas, A. T., Domínguez, A., and Ruiz-Herrera, J. (2012). Identification of dimorphism-involved genes of Yarrowia lipolytica by means of microarray analysis. Research in microbiology, 163, 378-387.
Braga, A., Mesquita, D. P., Amaral, A. L., Ferreira, E. C., and Belo, I. (2016). Quantitative image analysis as a tool for Yarrowia lipolytica dimorphic growth evaluation in different culture media. Journal of biotechnology, 217, 22-30.
Papanikolaou, S., and Aggelis, G. (2002). Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource technology, 82, 43-49.
Carsanba, E., Papanikolaou, S., Fickers, P., and Erten, H. (2020). Lipids by yarrowia lipolytica strains cultivated on glucose in batch cultures. Microorganisms, 8, 1054.
Rajan, A., Kumar, D. S., and Nair, A. J. (2011). Isolation of a novel alkaline lipase producing fungus Aspergillus fumigatus MTCC 9657 from aged and crude rice bran oil and quantification by HPTLC. International journal of biological chemistry, 5, 116-126.
Enshaeieh, M., Abdoli, A., Nahvi, I., and Madani, M. (2013). Selection and optimization of single cell oil production from Rodotorula 110 using environmental waste as substrate. Journal of cell and molecular research, 4, 68-75.
Pénicaud, C., Landaud, S., Jamme, F., Talbot, P., Bouix, M., Ghorbal, S., and Fonseca, F. (2014). Physiological and biochemical responses of Yarrowia lipolytica to dehydration induced by air-drying and freezing. PloS one, 9, e111138.
Nambou K, Zhao C, Wei L, Chen J, Imanaka T, Hua Q. Designing of a “cheap to run” fermentation platform for an enhanced production of single cell oil from Yarrowia lipolytica DSM3286 as a potential feedstock for biodiesel. Bioresource technology. 2014 Dec1;173:324-33.
Rao, A. R., Dayananda, C., Sarada, R., Shamala, T. R., and Ravishankar, G. A. (2007). Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource technology, 98, 560-564.
Dey, P., and Maiti, M. K. (2013). Molecular characterization of a novel isolate of C andida tropicalis for enhanced lipid production. Journal of Applied Microbiology, 114(5), 1357-1368.
Domínguez, A., Deive, F. J., Sanromán, M. A., and Longo, M. A. (2003). Effect of lipids and surfactants on extracellular lipase production by Yarrowia lipolytica. Journal of Chemical Technology and Biotechnology: International Research in Process, Environmental and Clean Technology, 78, 1166-1170.
Katre, G., Joshi, C., Khot, M., Zinjarde, S., and RaviKumar, A. (2012). Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel. Amb Express, 2, 36.
Rakicka, M., Lazar, Z., Dulermo, T., Fickers, P., and Nicaud, J. M. (2015). Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnology for biofuels, 8, 104.
Ruiz-Herrera, J., and Sentandreu, R. (2002). Different effectors of dimorphism in Yarrowia lipolytica. Archives of Microbiology, 178, 477-483.
Fickers, P., Nicaud, J. M., Gaillardin, C., Destain, J., and Thonart, P. (2004). Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. Journal of applied microbiology, 96, 742-749.