[1] K. Hund-Rinke, M. Simon. (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environmental Science and Pollution Research. 13, 225-232.
[2] V. Stone, H. Johnston, M.J. Clift. (2007) Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions, NanoBioscience, IEEE Transactions on. 6, 331-340.
[3] J.J. Wang, B.J. Sanderson, H. Wang. (2007) Cyto-and genotoxicity of ultrafine TiO 2 particles in cultured human lymphoblastoid cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 628 99-106.
[4] S.B. Lovern, J.R. Strickler, R. Klaper. (2007) Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environmental science & technology. 41, 4465-4470.
[5] N. Lu, Z. Zhu, X. Zhao, R. Tao, X. Yang, Z. Gao. (2008) Nano titanium dioxide photocatalytic protein tyrosine nitration: a potential hazard of TiO 2 on skin. Biochemical and biophysical research communications. 370, 675-680.
[6] X.-H. Chen, L. Zhang, Y.-X. Weng, L.-C. Du, M.-P. Ye, G.-Z. Yang, R. Fujii, F.S. Rondonuwu, Y. Koyama, Y.-S. Wu. (2005) Protein structural deformation induced lifetime shortening of photosynthetic bacteria light-harvesting complex LH2 excited state. Biophysical journal. 88, 4262-4273.
[7] M. Heinlaan, A. Ivask, I. Blinova, H.-C. Dubourguier, A. Kahru. (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO 2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 71, 1308-1316.
[8] A. Rogach, N. Kotov, D. Koktysh, J. Ostrander, G. Ragoisha. (2000) Electrophoretic deposition of latex-based 3D colloidal photonic crystals: A technique for rapid production of high-quality opals. Chemistry of Materials. 12, 2721-2726.
[9] A.A. Mamedov, A. Belov, M. Giersig, N.N. Mamedova, N.A. Kotov. (2001) Nanorainbows: graded semiconductor films from quantum dots, Journal of the American Chemical Society. 123, 7738-7739.
[10] W.C. Chan, S. Nie. (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 281 2016-2018.
[11] M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos. (1998) Semiconductor nanocrystals as fluorescent biological labels, science. 281, 2013-2016.
[12] H. Mattoussi, J. Mauro, E. Goldman, T. Green, G. Anderson, V. Sundar, M. Bawendi. (2001) Bioconjugation of highly luminescent colloidal CdSe–ZnS quantum dots with an engineered two‐domain recombinant protein, physica status solidi (b), 224, 277-283.
[13] M. Han, X. Gao, J.Z. Su, S. Nie. (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nature biotechnology. 19, 631-635.
[14] Y.L. Wu, F. He, X.W. He, W.Y. Li, Y.K. Zhang. (2008) Spectroscopic studies on the interaction between CdTe nanoparticles and lysozyme, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. (2008) 71 1199-1203.
[15] A. Schmid, J. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt. (2001) Industrial biocatalysis today and tomorrow, Nature, 409, 258-268.
[16] E. Katz, I. Willner. (2004) Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angewandte Chemie International Edition. 43, 6042-6108.
[17] H. Van Dael. (1998) Chimeras of human lysozyme and α-lactalbumin: an interesting tool for studying partially folded states during protein folding, Cellular and Molecular Life Sciences CMLS. 54 1217-1230.
[18] Z. Gu, X. Zhu, S. Ni, Z. Su, H.-M. Zhou. (2004) Conformational changes of lysozyme refolding intermediates and implications for aggregation and renaturation. The international journal of biochemistry & cell biology. 36, 795-805.
[19] F. Yang, Y. Liang, F. Yang. (2003) Unfolding of lysozyme induced by urea and guanidine hydrochloride studied by" phase diagram" method of fluorescence. ACTA CHIMICA SINICA-CHINESE EDITION-. 61, 803-807.
[20] J. Tang, F. Luan, X. Chen. (2006) Binding analysis of glycyrrhetinic acid to human serum albumin: fluorescence spectroscopy, FTIR, and molecular modeling. Bioorganic & medicinal chemistry. 14, 3210-3217.
[21] C. Dufour, O. Dangles. (2005) Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochimica et Biophysica Acta (BBA)-General Subjects. 1721, 164-173.
[22] M. Salavati-Niasari, M. Bazarganipour, M. Ghasemi-Kooch. (2015) Facile Sonochemical Synthesis and Characterization of CdTe Nanoparticles, Synthesis and Reactivity in Inorganic. Metal-Organic, and Nano-Metal Chemistry. 45, 1558-1564.
[23] H. Sun, E. Cui, Z. Tan, R. Liu. (2014) Effects of N‐Acetyl‐L‐Cysteine‐Capped CdTe Quantum Dots on Bovine Serum Albumin and Bovine Hemoglobin: Isothermal Titration Calorimetry and Spectroscopic Investigations. Journal of biochemical and molecular toxicology. 28, 549-557.
[24] Y. Li, X. Zhang, C. Deng. Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chemical Society Reviews. 42, (2013) 8517-8539.
[25] J.M. Ruso, A. González-Pérez, G. Prieto, F. Sarmiento. (2003) Study of the interactions between lysozyme and a fully-fluorinated surfactant in aqueous solution at different surfactant–protein ratios. International journal of biological macromolecules. 33, 67-73.
[26] B. Yang, R. Liu, X. Hao, Y. Wu, J. Du. (2012) The interactions of glutathione-capped CdTe quantum dots with trypsin. Biological trace element research. 146, 396-401.
[27] A. Saboury, A. Moosavi‐Movahedi. (1995) Derivation of the thermodynamic parameters involved in the elucidation of protein thermal profiles. Biochemical education. 23, 164-167.
[28] H.N. Ong, B. Arumugam, S. Tayyab. (2009) Succinylation-induced conformational destabilization of lysozyme as studied by guanidine hydrochloride denaturation. Journal of biochemistry. 146, 895-904.
[29] A. Saboury, F. Karbassi. (2000) Thermodynamic studies on the interaction of calcium ions with alpha-amylase. Thermochimica acta. 362, 121-129.
[30] P. Venkatesu, M.-J. Lee, H.-m. Lin. (2007) Thermodynamic characterization of the osmolyte effect on protein stability and the effect of GdnHCl on the protein denatured state. The Journal of Physical Chemistry B. 111, 9045-9056.
[31] L. Momeni, B. Shareghi, S. Farhadian, F. Raisi. (2019) Making bovine trypsin more stable and active by Erythritol: A multispectroscopic analysis. docking and computational simulation methods. Journal of Molecular Liquids.292, 111389.
[32] R.R. Zhu, S.L. Wang, R. Zhang, X.Y. Sun, S.D. Yao. (2007) A novel toxicological evaluation of TiO2 nanoparticles on DNA structure. Chinese Journal of Chemistry. 25, 958-961.
[33] G.R. Behbehani, A. Divsalar, A. Saboury, A. Hekmat. (2009) A thermodynamic study on the binding of PEG-stearic acid copolymer with lysozyme. Journal of solution chemistry. 38, 219-229.
[34] T. Imoto, L.S. Forster, J. Rupley, F. Tanaka, (1972) Fluorescence of lysozyme: emissions from tryptophan residues 62 and 108 and energy migration. Proceedings of the National Academy of Sciences. 69, 1151-1155.
[35] T. Yamamoto, T. Kobayashi, K. Yoshikiyo, Y. Matsui, T. Takahashi, Y. Aso. (2009) A 1 H NMR spectroscopic study on the tryptophan residues of lysozyme included by glucosyl-β-cyclodextrin. Journal of Molecular Structure. 920, 264-269.
[36] Q. Yue, L. Niu, X. Li, X. Shao, X. Xie, Z. Song. (2008) Study on the interaction mechanism of lysozyme and bromophenol blue by fluorescence spectroscopy. Journal of fluorescence. 18, 11-15.
[37] Z.-D. Qi, B. Zhou, X. Qi, S. Chuan, Y. Liu, J. Dai. (2008) Interaction of rofecoxib with human serum albumin: determination of binding constants and the binding site by spectroscopic methods. Journal of Photochemistry and Photobiology A: Chemistry. 193, 81-88.
[38] M.-F. Zhang, Z.-Q. Xu, Y.-S. Ge, F.-L. Jiang, Y. Liu. (2012) Binding of fullerol to human serum albumin: spectroscopic and electrochemical approach. Journal of Photochemistry and Photobiology B: Biology. 108, 34-43.
[39] J.R. Lakowicz, G. Weber. (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry. 12, 4161-4170.
[40] J. Min, X. Meng-Xia, Z. Dong, L. Yuan, L. Xiao-Yu, C. Xing. (2004) Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin. Journal of Molecular Structure. 692, 71-80.
[41] B. Ghalandari, A. Divsalar, A.A. Saboury, K. Parivar. (2015) β-Lactoglobulin nanoparticle as a chemotherapy agent carrier for oral drug delivery system. Journal of the Iranian Chemical Society. 12, 613-619.
[42] M. Saeidifar, H. Mansouri-Torshizi, A.A. Saboury. (2015) Biophysical study on the interaction between two palladium (II) complexes and human serum albumin by Multispectroscopic methods. Journal of Luminescence. 167, 391-398.
[43] B. Delavari, A.A. Saboury, M.S. Atri, A. Ghasemi, B. Bigdeli, A. Khammari, P. Maghami, A.A. Moosavi-Movahedi, T. Haertlé, B. Goliaei. (2015) Alpha-lactalbumin: A new carrier for vitamin D 3 food enrichment. Food Hydrocolloids. 45, 124-131.
[44] L. Momeni, B. Shareghi, A.A. Saboury, S. Farhadian, F. Reisi. (2017) A spectroscopic and thermal stability study on the interaction between putrescine and bovine trypsin, International journal of biological macromolecules. 94, 145-153.
[45] L. Momeni, B. Shareghi, A.A. Saboury, S. Farhadian. (2016) The effect of spermine on the structure, thermal stability and activity of bovine pancreatic trypsin. RSC advances. 6, 60633-60642.
[46] S. Tabassum, W.M. Al-Asbahy, M. Afzal, F. Arjmand, Synthesis. (2012) characterization and interaction studies of copper based drug with human serum albumin (HSA): spectroscopic and molecular docking investigations. Journal of Photochemistry and Photobiology B: Biology. 114, 132-139.
[47] A.S. Roy, P. Ghosh. (2016) Characterization of the binding of flavanone hesperetin with chicken egg lysozyme using spectroscopic techniques: effect of pH on the binding. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 84, 21-34.
[48] B. Ghalandari, A. Divsalar, M. Eslami-Moghadam, A.A. Saboury, T. Haertlé, M. Amanlou, K. Parivar. (2015) Probing of the interaction between β-lactoglobulin and the anticancer drug oxaliplatin. Applied biochemistry and biotechnology. 175, 974-987.
[49] G. Vignesh, Y. Manojkumar, K. Sugumar, S. Arunachalam. (2015) Spectroscopic investigation on the interaction of some polymer–cobalt (III) complexes with serum albumins. Journal of Luminescence. 157, 297-302.
[50] B. Ghalandari, A. Divsalar, A.A. Saboury, T. Haertlé, K. Parivar, R. Bazl, M. Eslami-Moghadam, M. Amanlou. (2014) Spectroscopic and theoretical investigation of oxali–palladium interactions with β-lactoglobulin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 118, 1038-1046.
[51] P.D. Ross, S. Subramanian. (1981) Thermodynamics of protein association reactions: forces contributing to stability.Biochemistry.20, 3096-3102.
[52] A. Bonincontro, G. Onori. (2004) Investigation by dielectric spectroscopy of domain motions in lysozyme: effect of solvent and binding of inhibitors. Chemical physics letters. 398, 260-263.
[53] M. Moradi, A. Divsalar, A. Saboury, B. Ghalandari, A. Harifi. (2015) Inhibitory effects of deferasirox on the structure and function of bovine liver catalase: a spectroscopic and theoretical study. Journal of Biomolecular Structure and Dynamics. 33, 2255-2266.
[54] Y. Yue, X. Chen, J. Qin, X. Yao. (2009) Spectroscopic investigation on the binding of antineoplastic drug oxaliplatin to human serum albumin and molecular modeling. Colloids and Surfaces B: Biointerfaces. 69, 51-57.
[55] P. Jollès, J. Jollès. (1984) What's new in lysozyme research?, Molecular and cellular biochemistry. 63, 165-189.
[56] T. Peeters, G. Vantrappen. (1975) The Paneth cell: a source of intestinal lysozyme. Gut. 16, 553-558.
[57] D. Mason, C. Taylor. (1975) The distribution of muramidase (lysozyme) in human tissues. Journal of clinical pathology. 28, 124-132.