جداسازی و شناسایی برخی از باکتری‌های دریایی تشکیل دهنده‌ی بیوفیلم از آب‌های خلیج فارس و بررسی اثر ضد باکتری و ضد بیوفیلم تیمول بر آن‌ها

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه زیست‌شناسی دریا، دانشکده‌ی علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

2 گروه زیست‌شناسی دریا، دانشکده‌ی علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایرانگروه زیست شناسی، دانشکده علوم پایه، دانشگاه قم، قم، ایران

3 گروه شیمی، دانشکده‌ی علوم پایه، دانشگاه هرمزگان، بندرعباس، ایران

4 گروه شیلات، دانشکده‌ی علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

چکیده
در محیط‌ دریا، بیوفیلم‌ تشکیل شده روی سطوح غوطه‌ور، منجر به فولینگ ارگانیسم‌های بزرگ‌تر می‌شود؛ که این امر مشکلات اقتصادی و زیست‌محیطی فراوانی برای صنایع دریایی به همراه دارد. با توجه به اثرات زیان‌آور آنتی‌فولینگ‌های شیمیایی، توسعه‌ی راهکارهای ضد بیوفیلم سازگار با محیط زیست می‌تواند گامی مهم جهت کنترل فولینگ باشد. از اینرو، مطالعه‌ی حاضر با هدف جداسازی باکتری‌های تشکیل دهنده‌ی بیوفیلم از آب‌های خلیج فارس و بررسی اثر ضد میکروبی تیمول بر باکتری‌های منتخب انجام گرفت. 82 ایزوله‌ی باکتریایی جداسازی و توانایی تشکیل بیوفیلم توسط آن‌ها سنجش شد. در این میان، پنج ایزوله انتخاب و شناسایی با استفاده از توالی 16S rRNA انجام گرفت. نتایج نشان داد که پنج ایزوله‌ی منتخب متعلق به شاخه‌ی proteobacteria (جنس Vibrio، Kangiella و Psudoaltromonas) می‌باشند. در بررسی اثر ضد باکتری تیمول به روش انتشار دیسک، باکتری (PH1) K. spongicola (با قطر هاله 57/0 ±18میلی‌متر) ، بیش‌ترین حساسیت را نشان داد. کم‌ترین غلظت بازدارنده (MIC) و کشنده‌ی رشد (MBC) (به ترتیب در غلظت 5/31 و 5/62 میکروگرم / میلی‌لیتر) نیز در مقابل همین باکتری بدست آمد. نتایج حاصل از بررسی قدرت مهاری تیمول بر پدیده‌ی تشکیل بیوفیلم و همچنین تخریب بیوفیلم تشکیل شده‌ی باکتریPsudoaltromonas sp. (PH18) نشان داد که تیمول در غلظت‌های کم‌تر از MIC قادر به مهار تشکیل بیوفیلم می‌باشد که این تاثیر بر تخریب بیوفیلم، در غلظت‌های بالاتر از MIC قابل توجه است. بر اساس نتایج بدست آمده، به دلیل فعالیت ضد بیوفیلمی تیمول در مقابل باکتری‌های دریایی، استفاده از آن به عنوان یک ترکیب طبیعی در پوشش‌های آنتی‌فولینگی قابل پیشنهاد است.

کلیدواژه‌ها

موضوعات


1- Yebra, D. M., Kiil, S., Dam-Johansen, K. (2004a) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50, 75–104.
2- Melo, L. F., Bott, T. R. (1997) Biofouling in water systems. Exp. Therm. Fluid Sci. 14, 375– 381.
3- Thein, Z.M., Samaranayake, Y.H., Samaranayake, L.P. (2007) In vitro biofilm formation of Candida albicans and non-albicans Candida species under dynamic and anaerobic conditions. Arch. Oral Biol. 52, 761- 767.
4 - Powell, M. S., Slater, N. K. H. (1983) The deposition of bacterial cells from laminar flows onto solid surfaces. Biotechnol. Bioeng. 25, 891-900.
5- De Carvalho C. C. C. R. (2018) Marine biofilms: a successful microbial strategy with economic implications. Front. Mar. Sci. 126.
6- Marshall, K.C., Stout, R., Mitchell, R. (1971) Mechanism of the initial events in the sorption of marine bacteria to surfaces. J. Gen. Microbiol. 68, 337-348.
7- Perez, M., García, M., Blustein, G. (2015) Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives. Mar. Environ. Res. 109, 177-184.
8- Bhattarai, H.D., Paudel, B., Park, N.S., Lee, K.S., Shin, H.W. (2007) Evaluation of antifouling activity of eight commercially available organic chemicals against the early foulers marine bacteria and Ulva spores. J. Environ. Biol. 28, 857-863.
9- Gutierrez-Pacheco, M.M., Gonzalez-Aguilar, G.A., Martinez-Tellez, M.A., Lizardi-Mendoza, J., Madera-Santana, T.J., Bernal-Mercado, A.T., Vazquez-Armenta, F.J., Ayala-Zavala, J.F. (2018) Carvacrol inhibits biofilm formation and production of extracellular polymeric substances of Pectobacterium carotovorum subsp. Carotovorum. Food Control. 89, 210- 218.
10- Pavela, R., (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind. Crops. Prod. 76,174-87.
11- Martínez-Hernández, G.B., Amodio, M.L., Colelli, G. (2017) Carvacrol-loaded chitosan nanoparticles maintain quality of fresh-cut carrots. Innov. Food Sci. Emerg. Technol. 41, 56–63.
12- Nychas, G. J. E., Skandamis, P. N., Tassou, C. C. (2000) Antimicrobials from herbs and spices. In S. Roller (Ed.), Natural antimicrobials for the minimal processing of foods. Boca Raton FL (USA): CRC Press, Boca Raton.
13- Inbakandana, D., Sriyutha Murthyc, P., Venkatesand, R., Ajmal Khan, S. (2010) 16S rDNA sequence analysis of culturable marine biofilm forming bacteria from a ship’s hull. Biofouling. 26, 893- 899.
14- Čabarkapa, I., Čolović, R., Đuragić, O., Popović, S., Kokić, B., Milanov, D., Pezo, L (2019) Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella enteritidis. Biofouling. 35 (3), 361-375.
15- Stepanović, S., Vuković, D., Hola, V., Bonaventura, G. D., Djukić, S., Ćirković, I., Ruzicka, F (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis. 115 (8), 891-899.
16- Kwon, K. K., Lee, H. S., Jung, S. Y., Yim, J. H., Lee, J. H., Lee, H. K (2002) Isolation and identification of biofilm-forming marine bacteria on glass surfaces in Dae-Ho Dike, Korea. J. Microbiol. 40 (4), 260-266.
17- Ashrafudoulla, M., Mizan, M. F. R., Ha, A. J. W., Park, S. H. Ha, S. D (2020) Antibacterial and antibiofilm mechanism of eugenol against antibiotic resistance Vibrio parahaemolyticus. Food Microbiol. 91, 103500.
18- Jadhav, S., Shah, R., Bhave, M., Palombo, E. A (2013) Inhibitory activity of yarrow essential oil on Listeria planktonic cells and biofilms. Food Control. 29 (1), 125-130.
19- Miladi, H., Mili, D., Slama, R. B., Zouari, S., Ammar, E., Bakhrouf, A (2016) Antibiofilm formation and anti-adhesive property of three mediterranean essential oils against a foodborne pathogen Salmonella strain. Microb. Pathog. 93, 22-31.
20- Lejars, M., Margaillan, A., Bressy, C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 112 (8), 4347-4390.
21- Grasland, B., Mitalane, J., Briandet, R., Quemener, E., Meylheuc, T., Linossier, I., Vallee-Rehel, K., Haras, D (2003) Bacterial biofilm in seawater: cell surface properties of early-attached marine bacteria. Biofouling. 19 (5), 307-313.
22- Kavitha, S., Raghavan, V (2018) Isolation and characterization of marine biofilm forming bacteria from a ship’s hull. Front. Biol. 13 (3), 208-214.
23- Bragadeeswaran, S., Kumaran, S. N (2019) Genetic diversity among culturable marine biofilm forming bacteria isolated from different test panels. Res. J. Biotechnol. 14 (1), 25-33.
24- Ultee, A., Bennik, MH., Moezelaar, R (2002) The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 68,1561–1568.
25- Lambert, RJW., Skandamis, PN., Coote, PJ., Nychas, GJE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91, 453–462.
26- Xu, J., Zhou, F., Ji, BP., Pei, RS., Xu, N (2008) The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 47, 174–179.
27. Khezri, M., The effects of biofilm formation in bacteria from different perspectives (2019) The effects of biofilm formation in bacteria from different perspectives. Nova Biol. Rep. 6 (1), 70-78.
28- Burt, SA., Ojo-Fakunle, VT., Woertman, J., Veldhuizen, EJ (2014) The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One. 9 (4): e 93414.
29- Soni, KA., Oladunjoye, A., Nannapaneni, R., Schilling, MW., Silva, JL., Mikel, B., Bailey, RH (2013) Inhibition and inactivation of Salmonella Typhimurium biofilms from polystyrene and stainless-steel surfaces by essential oils and phenolic constituent carvacrol. J. Food. Prot. 76, 205–212.
30- Inamuco, J., Veenendaal, A. K. J., Burt, S. A., Post, J. A., Tjeerdsma-van Bokhoven, J. L. M., Haagsman, H. P., Veldhuizen, E. J. A (2012) Sub-lethal levels of carvacrol reduce Salmonella Typhimurium motility and invasion of porcine epithelial cells. Vet. Microbiol. 157(1-2), 200–207.
31- Szczepanski, S., Lipski, A (2014) Essential oils show specific inhibiting effects on bacterial biofilm formation. Food. Cont. 36, 224–229.