1. Swieszkowski, W., et al., Repair and regeneration of osteochondral defects in the articular joints. Biomolecular engineering, 2007. 24(5): p. 489-495.
2. Li, Z., et al., 3D-printed scaffolds with calcified layer for osteochondral tissue engineering. Journal of bioscience and bioengineering, 2018. 126(3): p. 389-396.
3. Yousefi, A.M., et al., Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. Journal of biomedical materials research Part A, 2015. 103(7): p. 2460-2481.
4. Temenoff, J.S. and A.G. Mikos, Tissue engineering for regeneration of articular cartilage. Biomaterials, 2000. 21(5): p. 431-440.
5. Huey, D.J., J.C. Hu, and K.A. Athanasiou, Unlike bone, cartilage regeneration remains elusive. Science, 2012. 338(6109): p. 917-921.
6. Chen, H., et al., Drilling and microfracture lead to different bone structure and necrosis during bone‐marrow stimulation for cartilage repair. Journal of Orthopaedic Research, 2009. 27(11): p. 1432-1438.
7. Kul Babur, B., et al., The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering. PloS one, 2015. 10(5): p. e0122250.
8. Felson, D.T., et al., Osteoarthritis: new insights. Part 1: the disease and its risk factors. Annals of internal medicine, 2000. 133(8): p. 635-646.
9. Yang, J., et al., Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta biomaterialia, 2017. 57: p. 1-25.
10. Makris, E.A., et al., Repair and tissue engineering techniques for articular cartilage. Nature Reviews Rheumatology, 2015. 11(1): p. 21-34.
11. Kalson, N.S., P.D. Gikas, and T.W. Briggs, Current strategies for knee cartilage repair. International journal of clinical practice, 2010. 64(10): p. 1444-1452.
12. Mella, C., A. Nuñez, and I. Villalón, Treatment of acetabular chondral lesions with microfracture technique. SICOT-J, 2017. 3.
13. Brittberg, M., et al., Cartilage repair in the degenerative ageing knee: a narrative review and analysis. Acta orthopaedica, 2016. 87(sup363): p. 26-38.
14. Panseri, S., et al., Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surgery, Sports Traumatology, Arthroscopy, 2012. 20(6): p. 1182-1191.
15. Zhang, B., J. Huang, and R.J. Narayan, Gradient scaffolds for osteochondral tissue engineering and regeneration. Journal of Materials Chemistry B, 2020. 8(36): p. 8149-8170.
16. Nooeaid, P., et al., Osteochondral tissue engineering: scaffolds, stem cells and applications. Journal of cellular and molecular medicine, 2012. 16(10): p. 2247-2270.
17. Minas, T., A primer in cartilage repair. The Journal of bone and joint surgery. British volume, 2012. 94(11_Supple_A): p. 141-146.
18. Huselstein, C., Y. Li, and X. He, Mesenchymal stem cells for cartilage engineering. Bio-medical materials and engineering, 2012. 22(1-3): p. 69-80.
19. Cavallo, C., et al., Chondrogenic differentiation of bone marrow concentrate grown onto a hylauronan scaffold: rationale for its use in the treatment of cartilage lesions. Journal of Biomedical Materials Research Part A, 2013. 101(6): p. 1559-1570.
20. Oliveira, H.L., et al., Histological evaluation of bone repair with hydroxyapatite: a systematic review. Calcified tissue international, 2017. 101(4): p. 341-354.
21. Roseti, L., et al., Scaffolds for bone tissue engineering: state of the art and new perspectives. Materials Science and Engineering: C, 2017. 78: p. 1246-1262.
22. Sheikh, Z., et al., Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomaterials research, 2017. 21(1): p. 1-20.
23. Bauermeister, A.J., A. Zuriarrain, and M.I. Newman, Three-dimensional printing in plastic and reconstructive surgery: a systematic review. Annals of plastic surgery, 2016. 77(5): p. 569-576.
24. Dai Prè, E., G. Conti, and A. Sbarbati, Hyaluronic acid (HA) scaffolds and multipotent stromal cells (MSCs) in regenerative medicine. Stem cell reviews and reports, 2016. 12(6): p. 664-681.
25. Barr, A.J., et al., The relationship between three-dimensional knee MRI bone shape and total knee replacement—a case control study: data from the Osteoarthritis Initiative. Rheumatology, 2016. 55(9): p. 1585-1593.
26. van der Woude, J.-T.A., et al., Five-year follow-up of knee joint distraction: clinical benefit and cartilaginous tissue repair in an open uncontrolled prospective study. Cartilage, 2017. 8(3): p. 263-271.
27. Ramezanifard, R. and M. Kabiri, Effects of platelet rich plasma and chondrocyte co-culture on MSC chondrogenesis, hypertrophy and pathological responses. EXCLI journal, 2017. 16: p. 1031.
28. Tat, S.K., et al., Strontium ranelate inhibits key factors affecting bone remodeling in human osteoarthritic subchondral bone osteoblasts. Bone, 2011. 49(3): p. 559-567.
29. Solheim, E., Growth factors in bone. International orthopaedics, 1998. 22(6): p. 410-416.
30. Wu, K., et al., Induction of osteogenic differentiation of stem cells via a lyophilized microRNA reverse transfection formulation on a tissue culture plate. International journal of nanomedicine, 2013. 8: p. 1595.
31. Itoh, T., et al., Expression of BMP-2 and Ets1 in BMP-2-stimulated mouse pre-osteoblast differentiation is regulated by microRNA-370. FEBS letters, 2012. 586(12): p. 1693-1701.
32. Collins, M.N., et al., Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Advanced Functional Materials, 2021. 31(21): p. 2010609.
33. Ji, W., et al., Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharmaceutical research, 2011. 28(6): p. 1259-1272.
34. Foong, C.Y. and N. Sultana, Fabrication of layer-by-layer electrospun composite membranes based on polylactic acid (PLA) and poly (caprolactone)(PCL)/Chitosan. ARPN J. Eng. Appl. Sci, 2015. 10: p. 9408-9413.
35. Eltom, A., G. Zhong, and A. Muhammad, Scaffold techniques and designs in tissue engineering functions and purposes: a review. Advances in Materials Science and Engineering, 2019. 2019.
36. Cheng, L., et al., 3D printing of micro-and nanoscale bone substitutes: A review on technical and translational perspectives. International Journal of Nanomedicine, 2021. 16: p. 4289.
37. Aramwit, P., et al., A green salt‐leaching technique to produce sericin/PVA/glycerin scaffolds with distinguished characteristics for wound‐dressing applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015. 103(4): p. 915-924.
38. Seunarine, K., et al., 3D polymer scaffolds for tissue engineering. 2006.