1. Zhang, L. and T.J. Webster, Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano today, 2009. 4(1): p. 66-80.
2. Bokhari, M.A., et al., The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel—polyHIPE polymer hybrid material. Biomaterials, 2005. 26(25): p. 5198-5208.
3. Ermis, M., E. Antmen, and V. Hasirci, Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioactive materials, 2018. 3(3): p. 355-369.
4. Habanjar, O., et al., 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. International Journal of Molecular Sciences, 2021. 22(22): p. 12200.
5. Gasperini, L., J.F. Mano, and R.L. Reis, Natural polymers for the microencapsulation of cells. Journal of the royal society Interface, 2014. 11(100): p. 20140817.
6. Park, H., et al., Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules, 2009. 10(3): p. 541-546.
7. Temenoff, J.S., et al., In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2004. 70(2): p. 235-244.
8. Zhang, M.W., et al., Adapting biodegradable oligo (poly (ethylene glycol) fumarate) hydrogels for pigment epithelial cell encapsulation and lens regeneration. Tissue Engineering Part C: Methods, 2010. 16(2): p. 261-267.
9. Tendulkar, S., et al., A three-dimensional microfluidic approach to scaling up microencapsulation of cells. Biomedical microdevices, 2012. 14(3): p. 461-469.
10. Aguilar, L.M.C., et al., Formation of alginate microspheres prepared by optimized microfluidics parameters for high encapsulation of bioactive molecules. Journal of Colloid and Interface Science, 2021. 587: p. 240-251.
11. Rogan, H., F. Ilagan, and F. Yang, Comparing single cell versus pellet encapsulation of mesenchymal stem cells in three-dimensional hydrogels for cartilage regeneration. Tissue Engineering Part A, 2019. 25(19-20): p. 1404-1412.
12. An, C., et al., Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration. Acta Biomaterialia, 2020. 111: p. 181-196.
13. Utech, S., et al., Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture. Advanced healthcare materials, 2015. 4(11): p. 1628-1633.
14. Mohajeri, M., et al., Cell encapsulation in alginate-based microgels using droplet microfluidics; a review on gelation methods and applications. Biomedical Physics & Engineering Express, 2022. 8(2): p. 022001.
15. Huebsch, N., et al., Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature materials, 2010. 9(6): p. 518-526.
16. Li, F., et al., Microfluidic encapsulation of human mesenchymal stem cells for articular cartilage tissue regeneration. ACS applied materials & interfaces, 2017. 9(10): p. 8589-8601.
17. Sarker, B., et al., Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PloS one, 2014. 9(9): p. e107952.
18. Sarker, B., et al., Alginate-based hydrogels with improved adhesive properties for cell encapsulation. International journal of biological macromolecules, 2015. 78: p. 72-78.
19. De Pascalis, C. and S. Etienne-Manneville, Single and collective cell migration: the mechanics of adhesions. Molecular biology of the cell, 2017. 28(14): p. 1833-1846.
20. Wang, Y., Programmable hydrogels. Biomaterials, 2018. 178: p. 663-680.