سویه جدید باکتری Ta-31 Staphylococcus pasteuri sp. به عنوان راکتور زیستی برای تولید نانوذرات مس

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانش آموخته بیوشیمی، دانشگاه کاشان، دانشکده شیمی، گروه زیست شناسی سلولی و ملکولی، کاشان، ایران

2 استادیار گروه زیست شناسی سلولی و ملکولی، دانشکده شیمی، دانشگاه کاشان

چکیده
هدف از این مطالعه جداسازی و شناسایی باکتری­ها از خاک های آلوده به مس و انتخاب باکتری توانا در تولید نانوذرات مس بود. در پژوهش حاضر نانوذرات مس از سویه باکتریایی Ta-31به صورت خارج­سلولی سنتز شد. اثر عوامل مختلف شامل غلظت پیش ماده (سولفات مس)، حجم مایع رویی کشت، القاکننده آنزیم و الکترون دهنده در تولید نانوذرات مس بهینه­سازی شد. خواص نانوذرات سنتز شده با استفاده از آنالیزهای طیف سنجی جذبی فرابنفش-مرئی (UV-Vis)، طیف سنجی فرو سرخ تبدیل فوریه (FTIR)، الگوی پراش اشعه ایکس (XRD)، طیف سنجی پراش انرژی پرتو ایکس (EDS) و تصویربرداری الکترونی روبشی (SEM) بررسی­ شدند. همچنین منحنی رشد سویه Ta-31 در حضور و عدم حضور القاکننده آنزیم (غلظت ١/٠ میلی­مولار از مس سولفات) رسم شد. سویه منتخب برای سنتز نانوذرات مس شناسایی و ویژگی­های فنوتیپی آنها بررسی شد و با توجه به تبارزایشی، ترادف ژن 16S rDNA تعیین و درخت تبارزایشی سویه­ منتخب رسم گردید. نتایج نشان داد شرایط بهینه برای سنتز نانوذرات مس، حضور 1% گلوکز به عنوان عامل الکترون­دهنده، غلظت ٢ میلی­مولار مس­سولفات به عنوان پیش ماده، مقدار 20 میلی­لیتر محلول رویی کشت بودند. در این شرایط بیشترین میزان نانوذرات مس تولید ­شد. طبق نتایج منحنی رشد، سویه Ta-31 پس از ١۵ ساعت به انتهای فاز فعال تکثیر و شروع فاز سکون رسید. نانوساختارهای مس تولید شده کروی و نامنظم بودند و توزیع اندازه آنها بیشتر در محدوده 30-40 نانومتر بود. نتایج نشان داد که سویه Ta-31 به گونه باکتریایی Staphylococcus pasteuri sp. با درصد شباهت 88/99 درصد تعلق دارد.

کلیدواژه‌ها

موضوعات


1 [Deljou A, Goudarzi S.)2016(.Green extracellular synthesis of the silver nanoparticles using thermophilic Bacillus sp. AZ1 and its antimicrobial activity against several human pathogenetic bacteria. Iranian journal of biotechnology,14(2),25.
]2 [Baker S, Harini B, Rakshith D, Satish S.)2013(.Marine microbes: invisible nanofactories. Journal of Pharmacy Research,6(3),383-8.
]3[ Hasan S.)2015(.A review on nanoparticles: their synthesis and types. Research Journal of Recent Sciences.
ISSN,22772502.
]4[ Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B.)2014(.Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences,9(6),385.
]5 [Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A.)2018(.Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microbial pathogenesis,116221-6.
]6[ Ahmad A, Senapati S, Khan MI, Kumar R, et al.)2003(.Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology,14(7),824.
]7[ Ghareib M, Tahon MA, Saif MM, Abdallah WE-S.)2016(.Rapid extracellular biosynthesis of silver nanoparticles by Cunninghamella phaeospora culture supernatant. Iranian journal of pharmaceutical research: IJPR,15(4),915.
]8[ Kimber RL, Lewis EA, Parmeggiani F, Smith K, et al.)2018(.Biosynthesis and characterization of copper nanoparticles using Shewanella oneidensis: application for click chemistry. Small,14(10),1703145.
]9[ Nazar N, Bibi I, Kamal S, Iqbal M, et al.)2018(.Cu nanoparticles synthesis using biological molecule of P. granatum seeds extract as reducing and capping agent: Growth mechanism and photo-catalytic activity. International journal of biological macromolecules,1061203-10.
]10[ Suneetha WJ, Maheswari KU.)2018(.Green Synthesis of Copper Nanoparticles Using Momordica charantia Fruit Extracts and Evaluation of Their Anti-Microbial Efficacy.
]11[ Tiwari M, Jain P, Hariharapura RC, Narayanan K, et al.)2016(.Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Biochemistry,51(10),1348-56.
]12[ Lee H-J, Lee G, Jang NR, Yun JH, Song JY, Kim BS.)2011(.Biological synthesis of copper nanoparticles using plant extract. Nanotechnology,1(1),371-4.
]13[ Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN.)2016(.Green synthesis of silver nanoparticles: a review. Green and Sustainable Chemistry,6(01),34.
]14[ Aljabali A, Akkam Y, Al Zoubi M, Al-Batayneh K, et al.)2018(.Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials,8(3),174.
]15[ Korbekandi H, Ashari Z, Iravani S, Abbasi S.)2013(.Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iranian journal of pharmaceutical research: IJPR,12(3),289.
]16[ Khalil MM, Ismail EH, El-Baghdady KZ, Mohamed D.)2014(.Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry,7(6),1131-9.
]17[ Marmur J.)1961(.A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal of molecular biology,3(2),208-IN1.https://doi.org/10.1016/S0022-2836(61)80047-8.
]18[ Kommedal Ø, Karlsen B, Sæbø Ø.)2008(.Analysis of mixed sequencing chromatograms and its application in direct 16S rRNA gene sequencing of polymicrobial samples. Journal of clinical microbiology,46(11),3766-71.
]19[ Yoon S-H, Ha S-M, Kwon S, Lim J, et al.)2017(.Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International journal of systematic and evolutionary microbiology,67(5),1613.https://dx.doi.org/10.1099%2Fijsem.0.001755.
]20[ Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S.)2011(.MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution,28(10),2731-9.https://doi.org/10.1093/molbev/msr121.
]21[ Felsenstein J.)1985(.Confidence limits on phylogenies: an approach using the bootstrap. Evolution,39(4),783-91.
]22[ Sharon EA, Velayutham K, Ramanibai R.)2018(.Biosynthesis of Copper Nanoparticles using Artocarpus heterophyllus against Dengue Vector Aedes aegypti. Int J Life Sci Scienti Res eISSN,2455(1716),1716.
]23[ Achudume A, Oladipo B.)2009(.Effects of dust storm on health in the Nigerian environment. Biology and Medicine,1(4),21-7.
]24[ Suárez-Cerda J, Espinoza-Gómez H, Alonso-Núñez G, Rivero IA, Gochi-Ponce Y, Flores-López LZ.)2017(.A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. Journal of Saudi Chemical Society,21(3),341-8.
]25[ Caroling G, Vinodhini E, Ranjitham AM, Shanthi P.)2015(.Biosynthesis of copper nanoparticles using aqueous Phyllanthus embilica (Gooseberry) extract-characterisation and study of antimicrobial effects. Int J Nano Chem,1(2),53-63.
]26[ Dashtizadeh Z, Kashi FJ, Ashrafi M.)2021(.Phytosynthesis of copper nanoparticles using Prunus mahaleb L. and its biological activity. Materials Today Communications,27102456.https://doi.org/10.1016/j.mtcomm.2021.102456.
]27[ Rakhshan N, Mansournia M, Kashi FJ.)2021(.A Novel Bacterial Route to Synthesize Cu Nanoparticles and Their Antibacterial Activity. Journal of Cluster Science1-14.
]28 [Chesneau O, Morvan A, Grimont F, Labischinski H, El Solh N.(1993). International Journal of Systematic & Evolutionary Microbiology,43,2: 237-44.