[1] Ming, D., & Hellekant, G. (1994). Brazzein, a new high‐potency thermostable sweet protein from Pentadiplandra brazzeana B. FEBS letters, 355, 106-108.
[2] Assadi-Porter, F. M., Maillet, E. L., Radek, J. T., Quijada, J., Markley, J. L., & Max, M. (2010). Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2–T1R3 human sweet receptor. Journal of molecular biology, 398, 584-599.
[3] Hellekant, G., & Danilova, V. (2005). Brazzein a small, sweet protein: discovery and physiological overview. Chemical senses, 30, 88.
[4] Chung, J. H., Kong, J. N., Choi, H. E., & Kong, K. H. (2018). Antioxidant, anti-inflammatory, and anti-allergic activities of the sweet-tasting protein brazzein. Food chemistry, 267, 163-169.
[5] Jafari, S. S., Jafarian, V., Khalifeh, K., Ghanavatian, P., & Shirdel, S. A. (2016). The effect of charge alteration and flexibility on the function and structural stability of sweet-tasting brazzein. RSC advances, 6, 59834-59841.
[6] Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A. E., & Kolinski, A. (2016). Coarse-grained protein models and their applications. Chemical reviews, 116, 7898-7936.
[7] Jiang, P., Ji, Q., Liu, Z., Snyder, L. A., Benard, L. M., Margolskee, R. F., & Max, M. (2004). The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. Journal of Biological Chemistry, 279, 45068-45075.
[8] Singarapu, K. K., Tonelli, M., Markley, J. L., & Assadi‐Porter, F. M. (2016). Structure‐function relationships of brazzein variants with altered interactions with the human sweet taste receptor. Protein Science, 25, 711-719.
[9] Hashimoto, C., Hudson, K. L., & Anderson, K. V. (1988). The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell, 52, 269-279.
[10] Lacagnina, M. J., Watkins, L. R., & Grace, P. M. (2018). Toll-like receptors and their role in persistent pain. Pharmacology & therapeutics, 184, 145-158.
[11] Ayala‐Cuellar, A. P., Cho, J., & Choi, K. C. (2019). Toll‐like receptors: A pathway alluding to cancer control. Journal of Cellular Physiology, 234, 21707-21715.
[12] Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Eugene, C. Y., Goodlett, D. R., ... & Aderem, A. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 410 , 1099-1103.
[13] Maîtrepierre, E., Sigoillot, M., Le Pessot, L., & Briand, L. (2013). An efficient Escherichia coli expression system for the production of a functional N-terminal domain of the T1R3 taste receptor. Bioengineered, 4, 25-29.
[14] Kämper, A., Apostolakis, J., Rarey, M., Marian, C. M., & Lengauer, T. (2006). Fully automated flexible docking of ligands into flexible synthetic receptors using forward and inverse docking strategies. Journal of chemical information and modeling, 46, 903-911.
[15] Willard, L., Ranjan, A., Zhang, H., Monzavi, H., Boyko, R. F., Sykes, B. D., & Wishart, D. S. (2003). VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic acids research, 31, 3316-3319.
[16] Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of molecular biology, 157, 105-132.
[17] Uziela, K., Menendez Hurtado, D., Shu, N., Wallner, B., & Elofsson, A. (2017). ProQ3D: improved model quality assessments using deep learning. Bioinformatics, 33, 1578-1580.
[18] Schaduangrat, N., Nantasenamat, C., Prachayasittikul, V., & Shoombuatong, W. (2019). ACPred: a computational tool for the prediction and analysis of anticancer peptides. Molecules, 24, 1973.
[19] Lengauer, T., & Rarey, M. (1996). Computational methods for biomolecular docking. Current opinion in structural biology, 6, 402-406.