نانوکپسولاسیون لیپیدی زگزانتین و ارزیابی مقاوت سرمایی آن در مدل غذایی شیر

نوع مقاله : پژوهشی اصیل

نویسندگان

1 1دانشکده علوم زیستی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران

2 گروه زیست شناسی دریا ،دانشکده علوم و فنون دریایی دانشگاه آزاد اسلامی واخد تهران شمال

3 گروه زیست شناسی، دانشکده علوم زیستی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران ،گروه فرآوری مواد غذایی، موسسه پژوهشی علوم و صنایع غذایی، مشهد، ایرانگروه فرآوری مواد غذایی، موسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران

4 گروه زیست شناسی، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران

چکیده
غنی کردن غذای انسان با استفاده از فناوری‌نو مثل نانوحامل‌های لیپیدی ، یک ابزار ساده و قابل‌دسترس است. بر این اساس، مطالعه حاضر به هدف ارزیابی حسی و تولید فراورده غذایی سالم و مفید به بررسی غنی سازی شیر با نانوکپسول های لیپیدی زیگزانتین و ارزیابی محافظت سرمایی آن پرداخته شد. طی تحقیق تجربی- آزمایشگاهی، استخراج زیگزانتین از اسپیرولینا پلاتنسیس، نانوحامل‌های تولید شده برای غنی سازی شیر به‌عنوان یک سیستم مدل غذایی استفاده شد. سه نمونه شیر خام، شیر غنی شده با نانوحامل لیپیدی حاوی زیگزانتین و شیر غنی شده با نانوحامل لیپیدی به صورت مستقیم (در غلظت مشابه نانوحامل) مورد بررسی قرارگرفت. به منظور بررسی کارایی نانوحامل های تولید شده، ترکیب های محافظ سرما (گلوکز، سوربیتول، گلیسرین، لاکتوز و ساکارز)، به شیر اضافه شد. ساکاروز بهترین محافظ سرما شناخته شد. ارزیابی حسی شیر غنی شده در مقیاس هدونیک پنج نقطه‌ای صورت پذیرفت و پارامترهای حسی مختلف مورد بررسی قرار گرفت. داده‌ها با استفاده از نرم افزار2016 Mini-tab آنالیز شد. نتایج تفاوت معنی داری بین ویژگی های حسی شیر شاهد با شیر غنی شده با نانوحامل ها (05/0>P) مشاهده نشد. کمترین اندازه ذرات و شاخص بس پاشیدگی در پوشش نانوحامل های با ترکیبات محافظ سرما، به ترتیب، 82/320 و 26/0 تا 31/0 بدست آمد. پتانسیل زتا ، 03/6- گزارش شد. با استفاده از غنی سازی شیر با نانوحامل‌های حاوی زیگزانتین، علاوه بر سلامت بینایی و پوست می توان مشکلات مربوط به کمبود افزودنیهای طبیعی مفید و عدم حلالیت فراورده غذایی را رفع نمود.

کلیدواژه‌ها

موضوعات


[1] Mehnert, W. and Mäder, K. (2012) Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev., vol. 64, pp. 83–101.
[2] Yu, B, et al. (2012) Spirulina is an effective dietary source of zeaxanthin to humans. Br. J. Nutr., vol. 108, no. 4, pp. 611–619, doi: 10.1017/S0007114511005885.
[3] Sajilata, M. G., R. S. and Singhal, Kamat, M. Y. (2008) Pigment Zeaxanthin — A ReviewSajilata. M. G., Singhal, R. S., & Kamat, M. Y. (2008). Pigment Zeaxanthin — A Review. Comprehensive Reviews In Food Science And Food Safety. 7, 29–49.,” Compr. Rev. Food Sci. Food Saf., vol. 7, pp. 29–49.
[4] Akhoond A, Mohebbat Z, Reza M, Shadi F. (2018) Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification. J Food Sci Technol. 55:287–298, doi.org/10.1007/s13197-017-2937-5.
[5] Amjidi, F., Shahedi,T M., Varshosaz,,J. and Nasirpour, A. (2013) Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol., vol. 19, pp. 29–43, 2013, doi: 10.1016/j.ifset.03.002.
[6] Taghavi, S. M., Momenpour, M., Azarian, M., Ahmadian, M., Souri, F., Taghavi, S. A., ... & Karchani, M. (2013). Effects of nanoparticles on the environment and outdoor workplaces. Electronic physician, 5(4), 706, ‌ doi: 10.14661/2013.706-712.
[7] Almalik A, Alradwan I, Abul M, Alshamsan A. (2017) Effect of cryoprotection on particle size stability and preservation of chitosan nanoparticles with and without hyaluronate or alginate coating. Saudi Pharm J. 25:861–867.doi.org/10.1016/j.jsps.2016.12.008.
[8] Kiani, A., Fathi, M. and Ghasemi, S. M. (2016) Production of novel vitamin D 3 loaded lipid nanocapsules for milk fortification. Int. J. Food Prop., vol. 20, no. 11, pp. 2466–2476, 2017, doi: 10.1080/10942912.1240690.
[9] Fathi, M. Varshosaz, J. Mohebbi, M. and Shahidi, F. (2013) Hesperetin-Loaded Solid Lipid Nanoparticles and Nanostructure Lipid Carriers for Food Fortification: Preparation, Characterization, and Modeling. Food Bioprocess Technol., vol. 6, no. 6, pp. 1464–1475, doi: 10.1007/s11947-012-0845-2.
[10] Chen, F. Li, H. Wong, R. N. B. Ji, and Jiang Y. (2005) Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography. vol. 1064, pp. 183–186, 2005, doi: 10.1016/j.chroma.12.065.
[11] Osanlou, R., Emtyazjoo,. M., Banaei, A., and M, Ali. (2022) “Production of zeaxanthin lipid nanocarriers and evaluation of their physicochemical properties,” pp. 1–25, doi.org/10.1016/j.colsurfa.2022.128588
[12] Siaterlis, A. Deepika, G. and Charalampopoulos, D. ( 2009) Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying. Lett. Appl. Microbiol., vol. 48, no. 3, pp. 295–301, doi: 10.1111/j.1472-765X.2008.02529. x.
[13] Apiratikul, N. Penglong, T. Suksen, K. Suksen, Svasti, S. A. (2013) Chairoungdua, and B. Yingyongnarongkul, “In vitro Delivery of Curcumin with Cholesterol-Based Cationic Liposomes. Биоорганическая Химия, vol. 39, no. 4, pp. 497–503, doi: 10.7868/s0132342313030032.
[14] Frøst, M. B., Dijksterhuis, G., & Martens, M. (2001). Sensory perception of fat in milk. Food Quality and Preference, 12(5-7), 327-336.‌
[15] De Campo, C., Assis, R. Q., da Silva, M. M., Costa, T. M. H., Paese, K., Guterres, S. S., ... & Flôres, S. H. (2019). Incorporation of zeaxanthin nanoparticles in yogurt: Influence on physicochemical properties, carotenoid stability and sensory analysis. Food Chemistry, 301, 125230.‌
[16] Crowe J. H. et al. (1988) Interactions of sugars with membranes. BBA - Rev. Biomembr., vol. 947, no. 2, pp. 367–384, doi: 10.1016/0304-4157(88)90015-9.
[17] Freitas, C. and Mu ,R. H. (2013) Spray-drying of solid lipid nanoparticles ( SLN TM ). vol. 46, pp. 145–151, 1998.
[18] Haratifar, S. and Corredig M. (2014) Interactions between tea catechins and casein micelles and their impact on renneting functionality. Food Chem., vol. 143, pp. 27–32, doi: 10.1016/j.foodchem.07.092.
[19] Yeganeh, E. M., Bagheri, H., & Mahjub, R. (2020). Preparation, statistical optimization and in-vitro characterization of a dry powder inhaler (Dpi) containing solid lipid nanoparticles encapsulating amphotericin b: Ion paired complexes with distearoyl phosphatidylglycerol. Iranian journal of pharmaceutical research: IJPR, 19(3), 45, doi.org/10.3109/03639045.2013.841187.‌
[20] Campos, E. V. R. et al. ( 2015) Polymeric and Solid Lipid Nanoparticles for Sustained Release of Carbendazim and Tebuconazole in Agricultural Applications. Sci. Rep., vol. 5, no. August, pp. 1–14, doi: 10.1038/srep13809.
[21] Sadati Behbahani, E., Ghaedi, M. Abbaspour, M. Rostamizadeh, K. and Dashtian, K. (2019) Curcumin loaded nanostructured lipid carriers: In vitro digestion and release studies. Polyhedron, vol. 164, pp. 113–122, doi: 10.1016/j.poly.2019.02.002.
[22] Kumar S. and J. Randhawa K. (2013) High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Mater. Sci. Eng. C, vol. 33, no. 4, pp. 1842–1852, doi: 10.1016/j.msec.2013.01.037.
[23] Tamjidi, F. Shahedi, M. Varshosaz, J. and Nasirpour, A. (2014) Design and characterization of astaxanthin-loaded nanostructured lipid carriers,” Innov. Food Sci. Emerg. Technol., vol. 26, pp. 366–374, 2014, doi: 10.1016/j.ifset.06.012.
[24] Jinno, J. I. et al. (2005) Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Release, vol. 111, no. 1–2, pp. 56–64, 2006, doi: 10.1016/j.jconrel.11.013.
[25] Noori, N., Noudoost, B., Gandomi Nasrabadi, H., & Akhondzadeh Basti, A. (2017). Effects of green tea extract nanoencapsulation on the survival of Lactobacillus casei and Bifidobacterium lactis in symbiotic ice cream. Journal of Veterinary Research, 72(2).