References
1. Soerjomataram, I., et al., Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. The Lancet, 2012. 380(9856): p. 1840-1850.
2. Berkenblit, A., et al., A phase II trial of weekly docetaxel in patients with platinum-resistant epithelial ovarian, primary peritoneal serous cancer, or fallopian tube cancer. Gynecologic oncology, 2004. 95(3): p. 624-631.
3. Prat, J., New insights into ovarian cancer pathology. Annals of oncology, 2012. 23: p. x111-x117.
4. Jemal, A., et al., Cancer statistics, 2008. CA: a cancer journal for clinicians, 2008. 58(2): p. 71-96.
5. Bast, R.C., B. Hennessy, and G.B. Mills, The biology of ovarian cancer: new opportunities for translation. Nature Reviews Cancer, 2009. 9(6): p. 415-428.
6. Du Bois, A., et al., A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. Journal of the National Cancer Institute, 2003. 95(17): p. 1320-1329.
7. Andrews, P. and S. Howell, Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance. Cancer cells (Cold Spring Harbor, NY: 1989), 1990. 2(2): p. 35-43.
8. Miller, K.D., et al., Cancer statistics for hispanics/latinos, 2018. CA: a cancer journal for clinicians, 2018. 68(6): p. 425-445.
9. Boloker, G., C. Wang, and J. Zhang, Updated statistics of lung and bronchus cancer in United States (2018). Journal of thoracic disease, 2018. 10(3): p. 1158.
10. Rotow, J. and T.G. Bivona, Understanding and targeting resistance mechanisms in NSCLC. Nature Reviews Cancer, 2017. 17(11): p. 637-658.
11. Cree, I.A. and P. Charlton, Molecular chess? Hallmarks of anti-cancer drug resistance. BMC cancer, 2017. 17(1): p. 1-8.
12. Valkov, E., et al., Structure of the Dcp2–Dcp1 mRNA-decapping complex in the activated conformation. Nature structural & molecular biology, 2016. 23(6): p. 574-579.
13. Li, G., et al., The Non-Coding RNAs Inducing Drug Resistance in Ovarian Cancer: A New Perspective for Understanding Drug Resistance. Frontiers in Oncology, 2021. 11.
14. Tay, Y., J. Rinn, and P.P. Pandolfi, The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014. 505(7483): p. 344-352.
15. Lin, M., et al., S100A7 regulates ovarian cancer cell metastasis and chemoresistance through MAPK signaling and is targeted by miR-330-5p. DNA and cell biology, 2018. 37(5): p. 491-500.
16. Xu, K., et al., How powerful are graph neural networks? arXiv preprint arXiv:1810.00826, 2018.
17. Chen, B.-Q., et al., Supercritical fluid-assisted fabrication of indocyanine green-encapsulated silk fibroin nanoparticles for dual-triggered cancer therapy. ACS Biomaterials Science & Engineering, 2018. 4(10): p. 3487-3497.
18. Li, J.-H., et al., starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic acids research, 2014. 42(D1): p. D92-D97.
19. Jeggari, A., D.S. Marks, and E. Larsson, miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics, 2012. 28(15): p. 2062-2063.
20. Betel, D., et al., The microRNA. org resource: targets and expression. Nucleic acids research, 2008. 36(suppl_1): p. D149-D153.
21. Shannon, P., et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research, 2003. 13(11): p. 2498-2504.
22. Zhang, X.-w., et al., Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochemical and biophysical research communications, 2015. 462(3): p. 227-232.
23. Hu, G., Personalized neural embeddings for collaborative filtering with text. arXiv preprint arXiv:1903.07860, 2019.
24. Wang, S., et al., The role of microRNA in cisplatin resistance or sensitivity. Expert Opinion on Therapeutic Targets, 2020. 24(9): p. 885-897.
25. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. cell, 2004. 116(2): p. 281-297.
26. Kong, X., et al., Analysis of lncRNA, miRNA and mRNA-associated ceRNA networks and identification of potential drug targets for drug-resistant non-small cell lung cancer. Journal of Cancer, 2020. 11(11): p. 3357.
27. Ju, C., et al., LncRNA SNHG5 promotes the progression of osteosarcoma by sponging the miR-212-3p/SGK3 axis. Cancer cell international, 2018. 18(1): p. 1-13.
28. Guo, L., et al., Construction and Analysis of a ceRNA Network Reveals Potential Prognostic Markers in Colorectal Cancer. Frontiers in Genetics, 2020. 11: p. 418.
29. Chen, H.-Y., et al., miR-103/107 prolong Wnt/β-catenin signaling and colorectal cancer stemness by targeting Axin2. Scientific reports, 2019. 9(1): p. 1-13.
30. Yu, Q., et al., MiR-103/107 induces tumorigenicity in bladder cancer cell by suppressing PTEN. Eur Rev Med Pharmacol Sci, 2018. 22(24): p. 8616-8623.
31. Amaar, Y.G. and M.E. Reeves, RASSF1C regulates miR-33a and EMT marker gene expression in lung cancer cells. Oncotarget, 2019. 10(2): p. 123.
32. Chen, R., et al., Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers. Journal of Cancer, 2020. 11(11): p. 3349.
33. Lee, S., J. Rauch, and W. Kolch, Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. International journal of molecular sciences, 2020. 21(3): p. 1102.
34. Liu, R., et al., PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell death & disease, 2020. 11(9): p. 1-12.
35. Teng, F., et al., DUSP1 induces apatinib resistance by activating the MAPK pathway in gastric cancer. Oncology reports, 2018. 40(3): p. 1203-1222.
36. Tice, D.A., I. Soloviev, and P. Polakis, Activation of the Wnt pathway interferes with serum response element-driven transcription of immediate early genes. Journal of Biological Chemistry, 2002. 277(8): p. 6118-6123.
37. Giulino-Roth, L., et al., Inhibition of Hsp90 suppresses PI3K/AKT/mTOR signaling and has antitumor activity in Burkitt lymphoma. Molecular cancer therapeutics, 2017. 16(9): p. 1779-1790.