مروری بر کاربرد آپتامرهای تشخیصی در کیت های نواری

نوع مقاله : مروری تحلیلی

نویسندگان

1 مالک اشتر

2 دانشگاه صنعتی مالک اشتر

چکیده
آپتامرها یا پادتن‌های شیمیایی اغلب توالی­های اسیدنوکلئیکی هستند که قادر به اتصال به طیف وسیعی از اهداف متنوع شامل مولکول­های کوچک، مولکول­های بزرگ و سلول­ها هستند. از جمله مزایای آپتامرها نسبت به پادتن‌ها می­توان به فرآیند تولید برون تنی، امکان انتخاب آپتامرها در برابر مولکول‌های سمی و غیرایمونوژن، ذخیره در بازه­های زمانی طولانی و هزینه تولید به‌مراتب کمتر نام برد. آپتامرها همچنین می‌توانند به‌راحتی اصلاح‌ و یا تثبیت شوند و سنتز آن­ها با خلوص و تکرارپذیری بالا همراه است، به طور شیمیایی پایدار بوده و به دلیل ماهیت نوکلئیک­اسیدی خود بسیار انعطاف‌پذیرتر از پادتن‌ها بوده و می‌توانند در قالب پروب فانوس مولکولی، ترکیبی از برهم‌کنش هدف - آپتامر و تکثیر اسیدنوکلئیک را برای دستیابی به محدوده‌های تشخیصی خیلی حساس بکار گیرند. این ویژگی­های جالب‌توجه، آپتامرها را به‌عنوان عناصر تشخیصی منحصربفرد برای ابزارهای تحلیلی همچون حسگرهای زیستی، روش­های رنگ­سنجی، تشدید پلاسمون سطحی و آزمایشگاه روی تراشه تبدیل کرده است. بااین‌حال، تمام این روش‌ها به کارکنان ماهر و ابزار دقیق مستقر در آزمایشگاه نیاز دارند در نتیجه کاربرد آن‌ها را محدود می‌کند. دراین‌خصوص سنجش‌های جریان جانبی یا کیت­های نواری و کاغذی نتایج سریع و قابل‌اطمینان را ارائه می‌دهند و تنها نیازمند مداخله کاربر در مرحله افزودن نمونه است. به دلیل سادگی آن‌ها، به طور گسترده در زمینه‌های مختلف از جمله پزشکی، رصد و پایش کیفیت محصولات غذایی و ایمنی محیطی استفاده می‌شود. در این تحقیق ضمن معرفی آپتامرها، مروری برکاربرد منحصربه­فرد آن در سنجش جریان جانبی و آینده این فناوری مورد بررسی قرار می گیرد.

کلیدواژه‌ها

موضوعات


1.Moon, J., Kim, G., Park, S. B., Lim, J., and Mo, C. (2015) Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers. Sensors. 15, 8884-8897
2. Mondal, B., Ramlal, S., Lavu, P. S. R., Murali, H. S., and Batra, H. V. (2015) A combinatorial systematic evolution of ligands by exponential enrichment method for selection of aptamer against protein targets. Appl Microbiol Biotechnol. 99, 9791-9803
3.Xiao, P., Lv, X., and Deng, Y. (2012) Immobilization of chymotrypsin on silica beads based on high affinity and specificity aptamer and its applications. Anal Lett. 45, 1264-1273
4.Zhou, J., and Rossi, J. (2017) Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 16, 181-202
5.Teng, J., Yuan, F., Ye, Y., Zheng, L., Yao, L., Xue, F., Chen, W., and Li, B. (2016) Aptamer-based technologies in foodborne pathogen detection. Front Microbiol. 7, 1426
6.Lin, C., Liu, Z.-S., Wang, D.-X., Li, L., Hu, P., Gong, S., Li, Y.-S., Cui, C., Wu, Z.-C., and Gao, Y. (2015) Generation of internal-image functional aptamers of okadaic acid via magnetic-bead SELEX. Mar Drugs. 13, 7433-7445
7.Mosing, R. K., Mendonsa, S. D., and Bowser, M. T. (2005) Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem. 77, 6107-6112
8.Ara, M. N., Hyodo, M., Ohga, N., Hida, K., and Harashima, H. (2012) Development of a novel DNA aptamer ligand targeting to primary cultured tumor endothelial cells by a cell-based SELEX method. PLoS One. 7, e50174
9.Lin, C. H., and Patei, D. J. (1997) Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP. Chem Biol. 4, 817-832
10.Templier, V., Roux, A., Roupioz, Y., and Livache, T. (2016) Ligands for label-free detection of whole bacteria on biosensors: A review. Trends Analyt Chem. 79, 71-79
11.Ruscito, A., and DeRosa, M. C. (2016) Small-molecule binding aptamers: Selection strategies, characterization, and applications. Front Chem. 4, 14
12.Tabarzad, M., and Jafari, M. (2016) Trends in the design and development of specific aptamers against peptides and proteins. Protein J. 35, 81-99
13.Chen, C., Zhao, P., Ni, M., Li, C., Xie, Y., and Fei, J. (2019) Temperature-induced amperometric glucose biosensor based on a poly (N-vinylcaprolactam)/graphene oxide composite film. Analyst. 144, 1960-1967
14.Mercier, M.-C., Dontenwill, M., and Choulier, L. (2017) Selection of nucleic acid aptamers targeting tumor cell-surface protein biomarkers. Cancers. 9, 69
15.Chu, T. C., Marks, J. W., Lavery, L. A., Faulkner, S., Rosenblum, M. G., Ellington, A. D., and Levy, M. (2006) Aptamer: toxin conjugates that specifically target prostate tumor cells. Cancer Res. 66, 5989-5992
16.Wu, P., Li, S., Ye, X., Ning, B., Bai, J., Peng, Y., Li, L., Han, T., Zhou, H., and Gao, Z. (2020) Cu/Au/Pt trimetallic nanoparticles coated with DNA hydrogel as target-responsive and signal-amplification material for sensitive detection of microcystin-LR. Anal Chim Acta. 1134, 96-105
17.Sharma, T. K., Bruno, J. G., and Dhiman, A. (2017) ABCs of DNA aptamer and related assay development. Biotechnol Adv. 35, 275-301
18.Tuerk, C., and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249, 505-510
19.Qu, J., Yu, S., Zheng, Y., Zheng, Y., Yang, H., and Zhang, J. (2017) Aptamer and its applications in neurodegenerative diseases. Cell Mol Life Sci. 74, 683-695
20.Sheikh, A., Md, S., and Kesharwani, P. (2022) Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed Pharmacother. 146, 112530
21.Blind, M., and Blank, M. (2015) Aptamer selection technology and recent advances. Mol Ther Nucleic Acids. 4, e223
22.Sefah, K., Shangguan, D., Xiong, X., O'donoghue, M. B., and Tan, W. (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc. 5, 1169-1185
23.Silverman, S. K. (2008) Catalytic DNA (deoxyribozymes) for synthetic applications—current abilities and future prospects. Chem comm, 3467-3485
24.Röthlisberger, P., Gasse, C., and Hollenstein, M. (2017) Nucleic acid aptamers: Emerging applications in medical imaging, nanotechnology, neurosciences, and drug delivery. Int J Mol Sci. 18, 2430
25.Barkheh, H., Zeinoddini, M., and Ranjbar, B. (2016) Colorimetric Detection of TNT Using Aptasensor based on Gold-nanoparticle. Journal of Police Medicine. 5, 177-186
26.Torshizi, R., Zeinoddini, M., Deldar, A.-A., and Robatjazi, S.-M. (2013) Design of aptamer-based detector for trinitrotoluene (TNT) and review of its performance. Journal of Police Medicine. 2, 39-45
27.Alipour, M., Zeinoddini, M., and Saeeidinia, A. (2018) Anti-trinitrotoluene aptamers: design, functional assessment and optimization. Appl Biochem Microbial. 54, 677-681
28.Barkheh, H., Zeinoddini, M., Ranjbar, B., and Xodadadi, N. (2021) A Novel Strategy for Trinitrotoluene Detection Using Functionalized Gold Nanoparticles. J Anal Chem. 76, 459-465
29.Ahirwar, R., Nahar, S., Aggarwal, S., Ramachandran, S., Maiti, S., and Nahar, P. (2016) In silico selection of an aptamer to estrogen receptor alpha using computational docking employing estrogen response elements as aptamer-alike molecules. Sci Rep. 6, 21285.
30.Carter, L. J., Garner, L. V., Smoot, J. W., Li, Y., Zhou, Q., Saveson, C. J., Sasso, J. M., Gregg, A. C., Soares, D. J., and Beskid, T. R. (2020) Assay techniques and test development for COVID-19 diagnosis, ed: ACS Publications. 6,591-605
31.Baker, M. (2015) Blame it on the antibodies. Nature. 521, 274
32.E Wang, R., Wu, H., Niu, Y., and Cai, J. (2011) Improving the stability of aptamers by chemical modification. Curr Med Chem. 18, 4126-4138
33. Monia, B. P., Johnston, J. F., Sasmor, H., and Cummins, L. L. (1996) Nuclease resistance and antisense activity of modified oligonucleotides targeted to Ha-ras. J Biol Chem. 271, 14533-14540
34.Griffin, L. C., Tidmarsh, G. F., Bock, L. C., Toole, J. J., and Leung, L. (1993) In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood. 18, 3271-3276
35.Pagratis, N. C., Bell, C., Chang, Y., Jennings, S., Fitzwater, T., Jellinek, D., and Dang, C. (1997) Potent 2′-amino-, and 2′-fluoro-2′-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat Biotechnol. 15, 68-73
36.Matsunaga, K.-i., Kimoto, M., Hanson, C., Sanford, M., Young, H. A., and Hirao, I. (2015) Architecture of high-affinity unnatural-base DNA aptamers toward pharmaceutical applications. Sci Rep. 5, 1-7
37.Shoara, A. A., Reinstein, O., Borhani, O. A., Martin, T. R., Slavkovic, S., Churcher, Z. R., and Johnson, P. E. (2018) Development of a thermal-stable structure-switching cocaine-binding aptamer. Biochimie. 145, 137-144
38.Rusconi, C. P., Roberts, J. D., Pitoc, G. A., Nimjee, S. M., White, R. R., Quick, G., Scardino, E., Fay, W. P., and Sullenger, B. A. (2004) Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotechnol. 22, 1423-1428
39.Gupta, S., Drolet, D. W., Wolk, S. K., Waugh, S. M., Rohloff, J. C., Carter, J. D., Mayfield, W. S., Otis, M. R., Fowler, C. R., and Suzuki, T. (2017) Pharmacokinetic properties of DNA aptamers with base modifications. Nucleic Acid Ther. 27, 345-353
40.Bahadır, E. B., and Sezgintürk, M. K. (2016) Lateral flow assays: Principles, designs and labels. Trends Analyt Chem. 82, 286-306
41.Kim, H., Chung, D.-R., and Kang, M. (2019) A new point-of-care test for the diagnosis of infectious diseases based on multiplex lateral flow immunoassays. Analyst. 144, 2460-2466
42.Huang, X., Aguilar, Z. P., Xu, H., Lai, W., and Xiong, Y. (2016) Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosense Bioelectron. 75, 166-180
43.Soh, J. H., Chan, H.-M., and Ying, J. Y. (2020) Strategies for developing sensitive and specific nanoparticle-based lateral flow assays as point-of-care diagnostic device. Nano Today. 30, 100831
44.Huang, L., Tian, S., Zhao, W., Liu, K., Ma, X., and Guo, J. (2020) Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst. 145, 2828-2840
45.Yan, W., Wang, K., Xu, H., Huo, X., Jin, Q., and Cui, D. (2019) Machine learning approach to enhance the performance of MNP-labeled lateral flow immunoassay. Nanomicro Lett. 11, 1-15
46. Reid, R., Chatterjee, B., Das, S. J., Ghosh, S., and Sharma, T. K. (2020) Application of aptamers as molecular recognition elements in lateral flow assays. Anal Biochem. 593, 113574
47.Schüling, T., Eilers, A., Scheper, T., and Walter, J. (2018) Aptamer-based lateral flow assays. AIMS Bioeng. 5, 78-102
48.Amraee, M., Oloomi, M., Yavari, A., and Bouzari, S. (2017) DNA aptamer identification and characterization for E. coli O157 detection using cell based SELEX method. Anal Biochem. 536, 36-44
49.Wang, L., Ma, W., Chen, W., Liu, L., Ma, W., Zhu, Y., Xu, L., Kuang, H., and Xu, C. (2011) An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection. Biosense Bioelectron. 26, 3059-3062
50.Jauset-Rubio, M., El-Shahawi, M. S., Bashammakh, A. S., Alyoubi, A. O., and Ciara, K. (2017) Advances in aptamers-based lateral flow assays. Trends Analyt Chem. 97, 385-398
51.Huang, L., Tian, S., Zhao, W., Liu, K., Ma, X., and Guo, J. (2021) Aptamer-based lateral flow assay on-site biosensors. Biosense Bioelectron. 186, 113279
52.Shin, W.-R., Sekhon, S. S., Rhee, S.-K., Ko, J. H., Ahn, J.-Y., Min, J., and Kim, Y.-H. (2018) Aptamer-based paper strip sensor for detecting Vibrio fischeri. ACS Comb Sci. 20, 261-268
53.Li, J., Jing, L., Song, Y., Zhang, J., Chen, Q., Wang, B., Xia, X., and Han, Q. (2018) Rapid detection of rongalite via a sandwich lateral flow strip assay using a pair of aptamers. Nanoscale Res Lett. 13, 1-7
54.Kang, J., Yeom, G., Jang, H., Oh, J., Park, C.-J., and Kim, M.-G. (2019) Development of replication protein A-conjugated gold nanoparticles for highly sensitive detection of disease biomarkers. Anal Chem. 91, 10001-10007
55.Wu, Z., He, D., Xu, E., Jiao, A., Chughtai, M. F. J., and Jin, Z. (2018) Rapid detection of β-conglutin with a novel lateral flow aptasensor assisted by immunomagnetic enrichment and enzyme signal amplification. Food Chem. 269, 375-379
56.Lee, B. H., Kim, S. H., Ko, Y., Park, J. C., Ji, S., and Gu, M. B. (2019) The sensitive detection of ODAM by using sandwich-type biosensors with a cognate pair of aptamers for the early diagnosis of periodontal disease. Biosense Bioelectron. 126, 122-128
57.Kim, S.-H., and Min, C.-S. (2019) Fouling reduction using the resonance vibration in membrane separation of whole milk. J Ind Eng Chem. 75, 123-129
58.Dalirirad, S., Han, D., and Steckl, A. J. (2020) Aptamer-based lateral flow biosensor for rapid detection of salivary cortisol. ACS Omega. 5, 32890-32898
59.Yang, Z., Yi, C., Lv, S., Sheng, Y., Wen, W., Zhang, X., and Wang, S. (2019) Development of a lateral flow strip biosensor based on copper oxide nanoparticles for rapid and sensitive detection of HPV16 DNA. Sens Actuators B Chem. 285, 326-332
60.Ali, M., Sajid, M., Khalid, M. A. U., Kim, S. W., Lim, J. H., Huh, D., and Choi, K. H. (2020) A fluorescent lateral flow biosensor for the quantitative detection of Vaspin using upconverting nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 226, 117610
61.Gao, Y., Zhu, Z., Xi, X., Cao, T., Wen, W., Zhang, X., and Wang, S. (2019) An aptamer-based hook-effect-recognizable three-line lateral flow biosensor for rapid detection of thrombin. Biosense Bioelectron. 133, 177-182
62.Mukama, O., Wu, W., Wu, J., Lu, X., Liu, Y., Liu, Y., Liu, J., and Zeng, L. (2020) A highly sensitive and specific lateral flow aptasensor for the detection of human osteopontin. Talanta. 210, 120624
63.Cheng, N., Liu, Y., Mukama, O., Han, X., Huang, H., Li, S., Zhou, P., Lu, X., and Li, Z. (2020) A signal-enhanced and sensitive lateral flow aptasensor for the rapid detection of PDGF-BB. RSC Adv. 10, 18601-18607
64.Liu, G., Gurung, A. S., and Qiu, W. (2019) Lateral flow aptasensor for simultaneous detection of platelet-derived growth factor-BB (PDGF-BB) and thrombin. Molecules. 24, 756
65.Du, Y., Liu, D., Wang, M., Guo, F., and Lin, J. S. (2021) Preparation of DNA aptamer and development of lateral flow aptasensor combining recombinase polymerase amplification for detection of erythromycin. Biosense Bioelectron. 181, 113157
66.Liu, J., Qin, Q., Zhang, X., Li, C., Yu, Y., Huang, X., Mukama, O., Zeng, L., and Wang, S. (2020) Development of a novel lateral flow biosensor combined with aptamer-based Isolation: application for rapid detection of grouper nervous necrosis virus. Front Microbiol. 11, 886
67.Wu, S., Liu, L., Duan, N., Li, Q., Zhou, Y., and Wang, Z. (2018) Aptamer-based lateral flow test strip for rapid detection of zearalenone in corn samples. J Agric Food Chem. 66, 1949-1954
68.Zhu, C., Zhang, G., Huang, Y., Yang, S., Ren, S., Gao, Z., and Chen, A. (2018) Dual-competitive lateral flow aptasensor for detection of aflatoxin B1 in food and feedstuffs. J Hazard Mater. 344, 249-257
69.Liu, J., Zeng, J., Tian, Y., and Zhou, N. (2018) An aptamer and functionalized nanoparticle-based strip biosensor for on-site detection of kanamycin in food samples. Analyst. 143, 182-189
70.Jin, B., Yang, Y., He, R., Park, Y. I., Lee, A., Bai, D., Li, F., Lu, T. J., Xu, F., and Lin, M. (2018) Lateral flow aptamer assay integrated smartphone-based portable device for simultaneous detection of multiple targets using upconversion nanoparticles. Sens Actuators B Chem. 276, 48-56
71.Gong, S., Ren, H., Lin, C., Hu, P., Tian, R., Liu, Z., Li, Y., Zhou, Y., Yang, Y., and Lu, S. (2018) Immunochromatographic strip biosensor for the rapid detection of N-glycolylneuraminic acid based on aptamer-conjugated nanoparticle. Anal Biochem. 561, 52-58
72.Yu, Q., Zhao, Q., Wang, S., Zhao, S., Zhang, S., Yin, Y., and Dong, Y. (2020) Development of a lateral flow aptamer assay strip for facile identification of theranostic exosomes isolated from human lung carcinoma cells. Anal Biochem. 594, 113591
73. Sun, J., Gan, Y., Kong, L., Zhou, S., Liang, T., Wang, X., Wan, H., and Wang, P. (2019) A Novel Lateral Flow Strip Based on DNA-Functionalized Gold Nanoparticles for On-site Detection of Mercury (II) Ions. ISOEN 2019. 1-3
74.Zhang, G., Zhu, C., Huang, Y., Yan, J., and Chen, A. (2018) A lateral flow strip based aptasensor for detection of ochratoxin A in corn samples. Molecules. 23, 291
75.Wu, S., Liu, L., Duan, N., Wang, W., Yu, Q., and Wang, Z. (2018) A test strip for ochratoxin A based on the use of aptamer-modified fluorescence upconversion nanoparticles. Mikrochim Acta. 185, 1-8
76.Tripathi, P., Kumar, A., Sachan, M., Gupta, S., and Nara, S. (2020) Aptamer-gold nanozyme based competitive lateral flow assay for rapid detection of CA125 in human serum. Biosense Bioelectron. 165, 112368
77.Ranganathan, V., Srinivasan, S., Singh, A., and DeRosa, M. C. (2020) An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2). Anal Biochem. 588, 113471
78.Alnajrani, M. N., and Alsager, O. A. (2019) Lateral flow aptasensor for progesterone: Competitive target recognition and displacement of short complementary sequences. Anal Biochem. 587, 113461
79.Deng, X., Wang, C., Gao, Y., Li, J., Wen, W., Zhang, X., and Wang, S. (2018) Applying strand displacement amplification to quantum dots-based fluorescent lateral flow assay strips for HIV-DNA detection. Biosense Bioelectron. 105, 211-217
80.Velu, R., and DeRosa, M. C. (2018) Lateral flow assays for Ochratoxin A using metal nanoparticles: comparison of “adsorption–desorption” approach to linkage inversion assembled nano-aptasensors (LIANA). Analyst. 143, 4566-4574
81.Dalirirad, S., and Steckl, A. J. (2019) Aptamer-based lateral flow assay for point of care cortisol detection in sweat. Sens Actuators B Chem. 283, 79-86
82.Dalirirad, S., and Steckl, A. J. (2020) Lateral flow assay using aptamer-based sensing for on-site detection of dopamine in urine. Anal Biochem. 596, 113637
83.Tasbasi, B. B., Guner, B. C., Sudagidan, M., Ucak, S., Kavruk, M., and Ozalp, V. C. (2019) Label-free lateral flow assay for Listeria monocytogenes by aptamer-gated release of signal molecules. Anal Biochem. 587, 113449
84.Wu, W., Zhao, S., Mao, Y., Fang, Z., Lu, X., and Zeng, L. (2015) A sensitive lateral flow biosensor for Escherichia coli O157: H7 detection based on aptamer mediated strand displacement amplification. Anal Chim Acta. 861, 62-68
85.Bruno, J. G. (2014) Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold. Pathogens. 3, 341-355
86.Fang, Z., Wu, W., Lu, X., and Zeng, L. (2014) Lateral flow biosensor for DNA extraction-free detection of salmonella based on aptamer mediated strand displacement amplification. Biosense Bioelectron. 56, 192-197
87.Fu, X., Wen, J., Li, J., Lin, H., Liu, Y., Zhuang, X., Tian, C., and Chen, L. (2019) Highly sensitive detection of prostate cancer specific PCA3 mimic DNA using SERS-based competitive lateral flow assay. Nanoscale. 11, 15530-15536
88.Bayoumy, S., Hyytiä, H., Leivo, J., Talha, S. M., Huhtinen, K., Poutanen, M., Hynninen, J., Perheentupa, A., Lamminmäki, U., and Gidwani, K. (2020) Glycovariant-based lateral flow immunoassay to detect ovarian cancer–associated serum CA125. Communications Biology. 3, 1-7
89. Lakhin, A. V., Tarantul, V. Z., Gening, L. V.(2013) Aptamers: problems, solutions and prospects. Acta Naturae, 5(4) , 34-43,
90. Rozenblum, G. T., Lopez, V. G., Vitullo, A. D., Radrizzani, M. (2016) Aptamers: current challenges and future prospects. Expert Opin Drug Discov, 11(2), 127-35.