[1] Choe, S., Bennett, M. J., Fujii, G., Curmi, P. M. G., Kantardjieff, K. A., Collier R. J., and Eisenberg D. (1992) The crystal structure of diphtheria toxin. Nature 357, 216-222.
[2] Jegatheeswaran, S., and Ein-Mozaffari, F. (2020) Investigation of the detrimental effect of the rotational speed on gas holdup in non-Newtonian fluids with Scaba-anchor coaxial mixer: A paradigm shift in gas-liquid mixing. Chem. Eng. J. 383, 123118.
[3] Wang, B., Zhang, K., and Field, R. W. (2018) Slug bubbling in flat sheet MBRs: Hydrodynamic optimization of membrane design variables through computational and experimental studies. J. Membr. Sci. 548, 165-175.
[4] Pino, M. S., Rodríguez-Jasso, R. M., Michelin, M., Flores-Gallegos, A. C., Morales-Rodriguez, R., Teixeira, J. A., and Ruiz, H. A. (2018) Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chem. Eng. J. 347, 119-136.
[5] Bach, C., Yang, J., Larsson, H., Stocks, S. M., Gernaey, K. V., Albaek, M. O., and Krühne, U. (2017) Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD. Chem. Eng. Sci. 171, 19-26.
[6] Moilanen, P., Laakkonen, M., Visuri, O., Alopaeus, V., and Aittamaa, J. (2008) Modelling mass transfer in an aerated 0.2 m3 vessel agitated by Rushton, Phasejet and Combijet impellers. Chem. Eng. J. 142, 95-108.
[7] Bezzo, F., Macchietto, S., and Pantelides, C. C. (2003) General hybrid multizonal/CFD approach for bioreactor modeling. AIChE J. 49, 2133-2148.
[8] Khopkar, A. R., and Tanguy, P. A. (2008) CFD simulation of gas-liquid flows in stirred vessel equipped with dual rushtonturbines: Influence of parallel, merging and diverging flow configurations. Chem. Eng. Sci. 63, 3810-3820.
[9] Ahmed, S. U., Ranganathan, P., Pandey, A., and Sivaraman, S. J. (2010) Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor. Biosci. Bioeng. 109, 588-597.
[10] Shu, L., Yang, M., Zhao, H., Li, T., Yang, L., and Zou X. (2019) Process optimization in a stirred tank bioreactor based on CFD-Taguchi method: A case study. J. Clean. Prod. 230, 1074-1084.
[11] Mowbray, M., Savage, T., Wu, C., Song, Z., Cho, B. A., Rio-Chanona, E. A. D., and Zhang, D. (2021) Machine learning for biochemical engineering: A review. Biochem. Eng. J. 172, 108054.
[12] Rathore, A. S. (2009) Roadmap for implementation of quality by design (QbD) for biotechnology products. Trends Biotechnol. 27, 546-553.
[13] Chlup, P. H., Bernard, D., and Stewart, G. G. (2008) Disc stack centrifuge operating parameters and their impact on yeast physiology. J. Inst. Brew. 114, 45-61.
[14] Shekhawata, L. K., Sarkara, J., Guptaa, R., Hadpeb, S., and Rathorea, A. S. (2018) Application of CFD in Bioprocessing: Separation of mammalian cells using disc stack centrifuge during production of biotherapeutics. J. Biotechnol. 267, 1-11.
[15] Shah, M. T., Parmar, H. B., Rhyne, L. D., Kalli, C., Utikar, R. P., and Pareek, V. K. (2019) A novel settling tank for produced water treatment: CFD simulations and PIV experiments. J. Pet. Sci. Eng. 182, 106352.
[16] Fernandez, X. R., and Nirschl H. (2013) Simulation of particles and sediment behaviour in centrifugal field by coupling CFD and DEM. Chem. Eng. Sci. 94, 7-19.
[17] Harrison, R. G., Todd, P. W., Rudge, S. R., and Petrides, D. P. (2015) Bioseparations Science and Engineering Oxford University Press, ISBN 978-0-19-539181-7.
[18] Petrides, D., Carmichae, D., Siletti, C., and Koulouris, A. (2014) Biopharmaceutical process optimization with simulation and scheduling tools. Bioengineering 1, 154-187.
[19] Rakicka-Pustułka, M., Mirończuk, A. M., Celińska, E., Białas, W., and Rymowicz, W. (2020) Scale-up of the erythritol production technology–Process simulation and techno-economic analysis. J. Clean. Prod. 257, 120533.
[20] Toumi, A., Jurgens, C., Jungo, C., Maier, B., Papavasileiou, V., and Petrides, D. (2010) Design and optimization of a large scale biopharmaceutical facility using process simulation and scheduling tools. Pharm. Eng. 30, 1-9.
[21] Prazeres, D. M. F., and Ferreira G. N. M. (2004) Design of flowsheets for the recovery and purification of plasmids for gene therapy and DNA vaccination. Chem. Eng. Process. 43, 609-624.
[22] Pleitt, K., Somasundaram, B., Johnson, B., Shave, E., and Lua, L. H. L. (2019) Evaluation of process simulation as a decisional tool for biopharmaceutical contract development and manufacturing organizations. Biochem. Eng. J. 150, 107252.
[23] Esmaeilnejad-Ahranjani, P., and Hajimoradi, M. (2022) Optimization of industrial-scale centrifugal separation of biological products: comparing the performance of tubular and disc stack centrifuges. Biochem. Eng. J. 178, 108281.
[24] Esmaeilnejad-Ahranjani, P., Noofeli, M., Faramarzi, A., (2022) Optimization of an industrial aerobic bioreactor using combined CFD, scale-down, and experimental techniques, Iran. J. Chem. Chem. Eng. https://doi.org/10.30492/ijcce.2022.532530.4799.
[25] Zarei, M., Shahpiri, A., Esmaeilnejad-Ahranjani, P., Arpanaei, A., (2016) Metallothionein-immobilized silica-coated magnetic particles as a novel nanobiohybrid adsorbent for highly efficient removal of cadmium from aqueous solutions. RSC Adv. 6:46785-46793.
[26] Esmaeilnejad-Ahranjani, P., Kazemeini, M., Singh, G., and Arpanaei, A. (2018) Effects of physicochemical characteristics of magnetically recoverable biocatalysts upon fatty acid methyl esters synthesis from oils. Renew. Energy 116, 613-622.
[27] Faramarzi, A., Noofeli, M., Tofighi, A., and Shahcheraghi, F. (2020) Comparison of the diphtheria toxin separation methods on standard vaccine strain using separator and filter presses to improve the quality & quantity of the final product. Jundishapur Sci. Med. J. 18, 459-470.
[28] Limonta, M., Krajnc, N. L., Vidic, U., and Zumalacárregui, L. (2013) Simulation for the recovery of plasmid for a DNA vaccine. Biochem. Eng. J. 80, 14-18.
[29] Pang, Y. X., Yan, Y., Foo, D. C. Y., Sharmin, N., Zhao, H., Lester, E., Wu, T., and Pang, C. H. (2021) The influence of lignocellulose on biomass pyrolysis product distribution and economics via steady state process simulation. J. Anal. Appl. Pyrolysis 158, 104968.
[30] Bajić, B. Ž., Vučurović, D. G., Dodić, S. N., Grahovac, J. A., and Dodić, J. M. (2017) Process model economics of xanthan production from confectionery industry wastewaters. J. Environ. Manage. 203, 999-1004.