[1] M. A. Liz, T. Coelho, V. Bellotti, M. I. Fernandez-Arias, P. Mallaina, and L. Obici. (2020) A Narrative Review of the Role of Transthyretin in Health and Disease, Neurol Ther 9, 395-402.
[2] M. Vieira, and M. J. Saraiva. (2014) Transthyretin: a multifaceted protein, Biomol Concepts 5, 45-54.
[3] T. Giao, J. Saavedra, E. Cotrina, J. Quintana, J. Llop, G. Arsequell, and I. Cardoso. (2020) Undiscovered Roles for Transthyretin: From a Transporter Protein to a New Therapeutic Target for Alzheimer's Disease, Int J Mol Sci 21.
[4] R. Costa, F. Ferreira-da-Silva, M. J. Saraiva, and I. Cardoso. (2008) Transthyretin protects against A-beta peptide toxicity by proteolytic cleavage of the peptide: a mechanism sensitive to the Kunitz protease inhibitor, PLoS One 3, e2899.
[5] S. A. Ghadami, S. Chia, F. S. Ruggeri, G. Meisl, F. Bemporad, J. Habchi, R. Cascella, C. M. Dobson, M. Vendruscolo, T. P. J. Knowles, and F. Chiti. (2020) Transthyretin Inhibits Primary and Secondary Nucleations of Amyloid-beta Peptide Aggregation and Reduces the Toxicity of Its Oligomers, Biomacromolecules 21, 1112-1125.
[6] S. A. Ghadami, F. Bemporad, B. M. Sala, G. Tiana, S. Ricagno, and F. Chiti. (2017) FRET studies of various conformational states adopted by transthyretin, Cellular and Molecular Life Sciences 74, 3577-3598.
[7] M. Cardamone, and N. K. Puri. (1992) Spectrofluorimetric assessment of the surface hydrophobicity of proteins, Biochem J 282 ( Pt 2), 589-593.
[8] M. Möller, and A. Denicola. (2002) Study of protein-ligand binding by fluorescence, Biochemistry and Molecular Biology Education 30, 309-312.
[9] M. R. Krebs, E. H. Bromley, and A. M. Donald. (2005) The binding of thioflavin-T to amyloid fibrils: localisation and implications, Journal of structural biology 149, 30-37.
[10] R. Khurana, C. Coleman, C. Ionescu-Zanetti, S. A. Carter, V. Krishna, R. K. Grover, R. Roy, and S. Singh. (2005) Mechanism of thioflavin T binding to amyloid fibrils, Journal of structural biology 151, 229-238.
[11] N. Rezaei-Ghaleh, H. Ramshini, A. Ebrahim-Habibi, A. A. Moosavi-Movahedi, and M. Nemat-Gorgani. (2008) Thermal aggregation of α-chymotrypsin: role of hydrophobic and electrostatic interactions, Biophysical chemistry 132, 23-32.
[12] S. S. Shahangian, B. Rasti, R. H. Sajedi, R. Khodarahmi, M. Taghdir, and B. Ranjbar. (2011) Artemin as an Efficient Molecular Chaperone, The Protein Journal 30, 549-557.
[13] M. R. Nilsson. (2004) Techniques to study amyloid fibril formation in vitro, Methods 34, 151-160.
[14] V. N. Uversky, and A. L. Fink. (2004) Conformational constraints for amyloid fibrillation: the importance of being unfolded, Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1698, 131-153.
[15] A. M. Landes, S. D. Sperry, M. E. Strauss, and D. S. Geldmacher. (2001) Apathy in Alzheimer's disease, Journal of the American Geriatrics Society 49, 1700-1707.
[16] J. Serot, D. Christmann, T. Dubost, and M. Couturier. (1997) Cerebrospinal fluid transthyretin: aging and late onset Alzheimer’s disease, Journal of Neurology, Neurosurgery & Psychiatry 63, 506-508.
[17] D. Jazaj, S. A. Ghadami, F. Bemporad, and F. Chiti. (2019) Probing conformational changes of monomeric transthyretin with second derivative fluorescence, Sci Rep 9, 10988.
[18] S. A. Ghadami, F. Bemporad, B. M. Sala, G. Tiana, S. Ricagno, and F. Chiti. (2017) FRET studies of various conformational states adopted by transthyretin, Cell Mol Life Sci 74, 3577-3598.
[19] S. Conti, X. Li, S. Gianni, S. A. Ghadami, J. Buxbaum, C. Cecchi, F. Chiti, and F. Bemporad. (2014) A complex equilibrium among partially unfolded conformations in monomeric transthyretin, Biochemistry 53, 4381-4392.
[20] M. J. Saraiva. (1995) Transthyretin mutations in health and disease, Hum Mutat 5, 191-196.
[21] C. A. Ribeiro, M. J. Saraiva, and I. Cardoso. (2012) Stability of the transthyretin molecule as a key factor in the interaction with a-beta peptide-relevance in Alzheimer's disease.
[22] M. Vieira, and M. J. Saraiva. (2014) Transthyretin: a multifaceted protein, Biomolecular concepts 5, 45-54.