بهینه‌سازی نانوکپسولاسیون کارواکرول و تیمول در پلیمرکیتوسان به روش سطح پاسخ (RSM)

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه زیست‌شناسی دریا، دانشکده‌ی علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

2 گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه قم، قم، ایران

3 گروه شیمی، دانشکده‌ی علوم پایه، دانشگاه هرمزگان، بندرعباس، ایران

4 گروه شیلات، دانشکده‌ی علوم و فنون دریایی، دانشگاه هرمزگان، بندرعباس، ایران

چکیده
فراریت اسانس‌ها و ناپایداری آن‌ها در برابر عوامل محیطی، موجب محدودیت استفاده از آن‌ها می‌گردد. با این وجود، کپسوله ‌کردن در نانوذرات پلیمری می‌تواند به طور قابل توجهی نیمه عمر این ترکیبات را افزایش دهد و استفاده از آن‌ها را به مدت طولانی‌تری، امکان‌پذیر نماید. در میان انواع پلیمرهای مورد استفاده در کپسولاسیون اسانس‌ها، پلیمر زیست‌تخریب‌پذیرکیتوسان به دلیل سمیت پایین و رهایش کنترل شده بسیار مورد توجه است. از اینرو، پژوهش حاضربا هدف نانوکپسولاسیون کارواکرول و تیمول درکیتوسان با تکنیک ژل‌سازی یونی انجام گرفت؛ و با در نظر گرفتن سه متغیر غلظت کیتوسان (۱/۰- ۳/۰ درصد)، غلظت TPP (۱/۰- ۲/۰ درصد) و غلظت اسانس (۱/۰- ۲/۰ درصد)، متوسط اندازه‌ی نانوذرات با استفاده از روش سطح پاسخ و طرح مرکب مرکزی بهینه‌سازی شد. توزیع اندازه‌ی ذرات و شاخص پراکندگی (PDI) نانوفرمولاسیون‌های آماده‌سازی شده به کمک آنالیز DLS، تأیید بارگیری اسانس با آنالیز FTIR و بازده‌ی کپسولاسیون به روش اسپکتروفتومتری تعیین شد. در ادامه، نتایج حاصل از بهینه‌سازی سنتز نانوذرات مورد بررسی قرار گرفت که بر این اساس، شرایط بهینه‌ی سنتز نانوذرات کیتوسان- تیمول و دستیابی به سایز ۱۰۱ نانومتر و بازده‌ی کپسولاسیون ۷۲ درصد، غلظت ۱۱/۰ درصد کیتوسان، ۱۹/۰ درصد TPP و ۱۴/۰ درصد تیمول تعیین شد. در مورد نانوذرات کیتوسان- کارواکرول، غلظت ۱۳/۰ درصد کیتوسان، ۱۹/۰ درصد TPP و ۱۵/۰ درصد کارواکرول منجر به تشکیل نانوذراتی با سایز ۹۵ نانومتر و بازده‌ی کپسولاسیون ۶۵ درصد گردید. به ‌طورکلی، نتایج این مطالعه توانایی روش سطح پاسخ جهت پیش‌بینی اندازه و پراکندگی ذرات نانوفرمولاسیون‌های کیتوسان حاوی کارواکرول و تیمول را نشان داد.

کلیدواژه‌ها

موضوعات


منابع
1- Keawchaoon, L., Yoksan, R (2011) Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. B: Biointerfaces. 84 (1), 163-171.
2- Jang, K.I., Lee, H.G (2008) Stability of chitosan nanoparticles for L-ascorbic acid during heat treatment in aqueous solution. J. agric. food. Chem. 56 (6), pp.1936-1941.
3- Manjunath, K., Venkateswarlu, V (2005) Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Contro Release. 107 (2), pp.215-228.
4- Tajeddin, B., (2020) Chitosan nanoparticles: production methods and application in food. Donyayenano. 59, pp. 32-43.
5- Venugopal, V., (2008) Marine products for healthcare: Functional and bioactive natraceutical compounds from the ocean. New York: CRC Press, p. 552.
6- Muzzarelli, R.A., (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar. drugs. 8 (2), pp.292-312.
7- Anand, M., Maruthupandy, M., Kalaivani, R., Suresh, S., Kumaraguru, A. (2014) Larvicidal activity of chitosan nanoparticles synthesized from crab and squilla species against Aedes aegypti. J. Colloid Sci. Biotechnol. 3,188-193.
8- Bulmer, C., Margaritis, A., Xenocostas, A. (2012) Production and characterization of novel chitosan nanoparticles for controlled release of rHu- Erythropoietin. Biochem. Eng. J. 68, pp.61-69.
9- Shahbazi, M.A., Hamidi, M., Mohammadi-Samani, S. (2013) Preparation, optimization, and in-vitro/in-vivo/ex-vivo characterization of chitosan-heparin nanoparticles: drug-induced gelation. J. Pharm. Pharmacol. 65 (8), pp.1118-1133.
10- Sharifi‐Rad, M., Varoni, E.M., Iriti, M., Martorell, M., Setzer, W.N., del Mar Contreras, M., Salehi, B., Soltani‐Nejad, A., Rajabi, S., Tajbakhsh, M., Sharifi‐Rad, J. (2018) Carvacrol and human health: A comprehensive review. Phytother. Res. 32 (9), pp. 1675-1687.
11- de Sousa, J.P., de Azerêdo, G.A., de Araújo Torres, R., da Silva Vasconcelos, M.A., da Conceição, M.L., de Souza, E.L. (2012) Synergies of carvacrol and 1, 8-cineole to inhibit bacteria associated with minimally processed vegetables. Int. J. Food Microbiol. 154 (3), pp.145-151.
12- Suntres, Z.E., Coccimiglio, J., Alipour, M. (2015) The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr. 55 (3), pp.304-318.
13- Martínez-Hernández, G.B., Amodio, M.L., Colelli, G. (2017) Carvacrol-loaded chitosan nanoparticles maintain quality of fresh-cut carrots. Innov. Food Sci. Emerg. Technol. 41, pp.56-63.
14- Wu, H., Ramachandran, C., Weiner, N.D. Roessler, B.J. (2001) Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. Int. J. Pharm. 220 (1-2), pp.63-75.
15- Anjali, C.H., Sharma, Y., Mukherjee, A., Chandrasekaran, N. (2012) Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag. Sci. 68 (2), pp.158-163.
16- Jamil, B., Abbasi, R., Abbasi, S., Imran, M., Khan, S.U., Ihsan, A., Javed, S., Bokhari, H. (2016) Encapsulation of cardamom essential oil in chitosan nano-composites: In-vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies. Front. Microbiol. 7, p.1580.
17- Abreu, F.O., Oliveira, E.F., Paula, H.C., de Paula, R.C. (2012) Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr. Polym. 89 (4), pp. 1277-1282.
18- Zamani, Z., Alipour, D., Moghimi, H.R., Mortazavi, S.A.R., Saffary, M. (2015) Development and evaluation of thymol microparticles using cellulose derivatives as controlled release dosage form. Iran. J. Pharm. Res. 14 (4), p.1031.
19- Woranuch, S., Yoksan, R (2013) Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydr. Polym. 96 (2), pp. 578-585.
20- Jamali, H., Dindarloo, K., Nikpey, A (2015) Optimization of metal working fluids treatment using ferric chloride by application of response surface methodology (RSM). J. Prevent. Med. 2 (1), pp.10-20.
21- Muthuvelayudham, R., Viruthagiri, T (2010) Application of central composite design-based response surface methodology in parameter optimization and on cellulase production using agricultural waste. Int. J. Chem. Biol. Eng. 3 (2), pp. 97-104.
22- Khuri, A.I., Mukhopadhyay, S (2010) Response surface methodology. Wiley Interdiscip. Rev. Comput. Stat. 2 (2), pp. 128-149.
23- Hirano, S., Yoshida, S., Takabuchi, N. (1993) N-[13C O] Acetylchitosan and its digestibility by silkworms. Carbohydr. Polym. 22 (2), pp.137-140.
24- Asghari, S.M., Ebrahimi Samani, S., Seraj, Z., Khajeh, Kh., Hosseinkhani, S (2013) optimization of chitosan nanoparticles synthesis. JMBS. 4 (2), pp. 65-73.
25- Kaloti, M., Bohidar, H.B (2010) Kinetics of coacervation transition versus nanoparticle formation in chitosan–sodium tripolyphosphate solutions. Colloids Surf. B. 81 (1), pp.165-173.
26- Esmaeilzadeh-Gharehdaghi, E., Faramarzi, M.A., Amini, M.A., Moazeni, E. Amani, A. (2014) Processing/formulation parameters determining dispersity of chitosan particles: an ANNs study. J. microencapsul. 31 (1), pp. 77-85.
27- Cui, H., Feng, Y., Ren, W., Zeng, T., Lv, H., Pan, Y. (2009) Strategies of large-scale synthesis of monodisperse nanoparticles. Recent Pat. Nanotechnol. 3 (1), pp.32-41.
28- Akbarzadeh, A., Samiei, M., Davaran, S. (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7 (1), pp. 1-13.
29- Huang, K.S., Sheu, Y.R., Chao, I.C. (2009) Preparation and properties of nano-chitosan. Polym. Plast. Technol. Eng. 48 (12), pp. 1239-1243.
30- Mohammadi, A., Hashemi, M., Hosseini, S.M. (2015) Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov. Food Sci. Emerg. Technol. 28, pp. 73-80.
31- Medina, E., Caro, N., Abugoch, L., Gamboa, A., Díaz-Dosque, M., Tapia, C. (2019) Chitosan thymol nanoparticles improve the antimicrobial effect and the water vapour barrier of chitosan-quinoa protein films. J. Food Eng. 240, pp. 191-198.
32- Sotelo-Boyás, M., Correa-Pacheco, Z., Bautista-Baños, S., y Gómez, Y.G. (2017) Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. Int. J. Biol. Macromol. 103, pp. 409-414.