بررسی اثر pH و دما بر فعالیت نانوسامانه حاوی آنزیم کندروئیتیناز ABCI بر پایه هیدروکسی‌آپاتیت

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشجوی مقطع کارشناسی ارشد نانوبیوتکنولوژی، گروه نانوبیوتکنولوژی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

2 استادیار گروه نانوبیوتکنولوژی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

3 دانشیار گروه بیوشیمی، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

چکیده
آنزیم کندروئیتیناز ABCI نوترکیب، یک لیاز باکتریایی است که گلیکوزآمینوگلیکان‌ها را تجزیه می‌کند و موجب رشد آکسون‌ها و بهبود عملکرد می‌شود.اما نگهداری این آنزیم به دلیل ناپایداری آن بسیار محدود شده است. یکی از راهبردهای غلبه بر این محدودیت تثبیت آنزیم می‌باشد. در این پژوهش، آنزیم کندروئیتیناز ABCI جداسازی شده از باکتری پروتئوس ولگاریس بر نانوذرات هیدروکسی‌آپاتیت، تثبیت شد. هیدروکسی‌آپاتیت یک زیست مواد سرامیکی فاقد سمیت بوده و دارای مساحت سطح بالایی می‌باشد، که برای بارگذاری مقدار زیادی از آنزیم سودمند است. بنابراین برای افزایش پایداری آنزیم کندروئیتیناز ABCI، تثبیت بر روی نانوذرات هیدروکسی آپاتیت به مدت 4 ساعت از طریق جذب فیزیکی در بافر فسفات در سه pH ۵، 6/8 و ۸ در دمای 4 درجه سانتی گراد انجام شد. در ادامه تثبیت آنزیم بر روی نانوذرات هیدروکسی آپاتیت از طریق تصویربرداری میکروسکوپ الکترونی روبشی- نشر میدانی و طیف‌سنجی فرابنفش، قبل و بعد از تثبیت مورد تایید قرار گرفت. سپس جهت بدست آوردن pH و دمای بهینه، میزان فعالیت نانوسیستم (نانوهیدروکسی آپانیت حاوی آنزیم) درسه pH و دما (C۴، C۲۵وC۳۷) مورد بررسی قرار گرفت. نتایج فعالیت بالاتری را در pH ۵ و دمای C 4 نسبت به سایر pH و دماها برای نانوسیستم نشان داد. بر اساس نتایج بدست آمده که نشان دهنده پایداری سامانه حاوی آنزیم در هر سه دما نسبت به آنزیم آزاد می باشد، این نانوسیستم می تواند یک گزینه مناسب برای کاربردهای بالینی در آینده باشد.

کلیدواژه‌ها

موضوعات


1. Zhao RR, Fawcett JW. (2013) Combination treatment with chondroitinase ABC in spinal cord injury--breaking the barrier. Neurosci Bull. 29, 477-83
2. Malgorzata P. (2016) Combined Delivery of Chondroitinase ABC (ChABC) and Stroma Cell Derived Factor 1α (SDF 1α) for Spinal Cord Regeneration. Chemical Engineering Applied Chemistry.
3. Coutinho, TC., et al. (2018) Nanoimmobilization of β-glucosidase onto hydroxyapatite. International Journal of Biological Macromolecules. 119, 1042-1051
4. Mingzu, Du., et al. (2021) Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment, and bone repair. Composites Part B: Engineering. 215, 108790
5. Qi D, Gao M, Li X, Lin J. (2020) Immobilization of Pectinase onto Porous Hydroxyapatite/Calcium Alginate Composite Beads for Improved Performance of Recycle. ACS Omega. 5, 20062-20069
6. Coutinho TC, Tardioli PW, Farinas CS. (2020) Hydroxyapatite nanoparticles modified with metal ions for xylanase immobilization. Int J Biol Macromol. 1, 344-353.
7. Daneshjou, S., et al. (2017) Porous silicon nanoparticle as a stabilizing support for chondroitinase. International Journal of Biological Macromolecules. 852-858
8. Naderi, MS., et al. (2018) Improving the stability of chondroitinase ABC I via interaction with gold nanorods. Int J Biol Macromol. 107, 297-304
9. Nazari-Robati, M., et al. (2013) Enhancement of thermal stability of chondroitinase ABC I by site-directed mutagenesis: an insight from Ramachandran plot. Biochim. Biophys. Acta. 1834, 479–486
10. Coutinho, TC., et al. (2020) Phytase Immobilization on Hydroxyapatite Nanoparticles Improves Its Properties for Use in Animal Feed. Appl Biochem Biotechnol 190, 270-292
11. Askaripour, H., et al. (2019) Magnetite nanoparticle as a support for the stabilization of chondroitinase ABCI. Artificial Cells. Nanomedicine, and Biotechnology. 47, 2721-2728
12. Askaripour, H., et al. (2020) Examination of chondroitinase ABC I immobilization onto dextran-coated Fe3O4 nanoparticles and its in-vitro release, Journal of Biotechnology. 309, 131-141
13. Moslemi, D., et al. (2015) Synthesis of Nano Hydroxyapatite: Application in Drug Delivery of Sulfasalazine. Journal of Nanostructures 5, 361-366
14. Wen, Yi., et al. (2021) Improvement of Drug-Loading Properties of Hydroxyapatite Particles Using Triethylamine as a Capping Agent: A Novel Approach. Crystals. 11, 703
15. Zuidema, JM., et al. (2015) Nanoparticle Technologies in the Spinal Cord. Cells Tissues Organs. 202, 102–115
16. Patra, JK., et al. (2018) Nano-based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology. 16, 71
17. Yamagata T, Saito H, Habuchi O, et al. (1968) Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem. 243, 1523–1535
18. Cabuk. B., et al. (2014) B-Galactosidase immobilization on chitosan-hydroxyapatite complex: effects of immobilization conditions. Journal of Nutritional Health & Food Engineering. 1, 13-23
19. Daneshjou, S., et al. (2020) Catalytic parameters and thermal stability of chondroitinase ABC1 on red porous silicon nanoparticles. Journal of Biotechnology 324, 83-90
20. Mohammad, NF., et al. (2014) Nanoporous hydroxyapatite preparation methods for drug delivery applications. Reviews on Advanced Materials Science 38, 138-147