بررسی اثرپذیری داروی دوکسوروبیسین در رده سلول عصبی SH-SY5Y با افزایش سطح بیان کاسپاز 9

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دلتشگاه تربیت مدرس

2 دانشگاه تربیت مدرس

چکیده
SH-SY5Y رده سلولی نوروبلاستوما است که به عنوان مدلی از سرطان و اختلالات نورودژنراتیو در مطالعات عصبی-تجربی استفاده می شود. یکی از عوامل ایجاد بیماری نقص در مسیر آپوپتوز می‌باشد. اختلال در پروتئین­های آپوپتوزی بر فرایند درمان­ و پاسخ به دارو تاثیر دارد. در سلول­های عصبی به دلیل بیان بالای پروتئین‌های مهارکننده‌ آپوپتوز، اثرپذیری داروها چندان نیست. درمان ترکیبی یکی از روش‌های درمان در حال توسعه است. هدف از این پژوهش، ارزیابی اثرپذیری داروی دوکسوروبیسین بر آپوپتوز در سلول SH-SY5Y در شرایط بیان بالای کاسپاز9 است. کاسپاز9 آنزیم کلیدی و پیش برنده آپوپتوز داخلی است. ابتدا با MTT سطح زنده­مانی سلول تحت تاثیر غلظت­های مختلف دارو بدست آمد. سپس در سلول ژن کاسپاز9 ترانسفکت شد و تحت تاثیر غلظت کمتر از IC50 دارو قرار گرفت و با روش­های مختلف، سطح انرژی و مرگ سلول بررسی شد. نتایج حاصل از سنجش ATP نشان داد با افزایش بیان کاسپاز9 در حضور دارو، سطح ATP کاهش می­یابد. فعالیت کاسپاز3/7 که شاخصی از مرگ سلول است بیانگر افزایش مرگ طی اثر دارو بر سلول دریافت کننده کاسپاز است. نشر حاصل از رنگ‌آمیزی پروپیدیوم به هوخست نشان داد بیان کاسپاز9 در ترکیب با دارو موجب القای بیشتر مرگ خواهد شد برای اطمینان از سطوح بیانی پروتئین القاکننده مرگ سلولی، با وسترن بلات مقدار پروتئین کاسپاز3 بررسی شد که افزایش معناداری در حالت ترکیب کاسپاز9 و دارو نشان داد. یافته‌های این پژوهش نشان داد القای بیان کاسپاز9 تاثیر دارو را تشدید می کند و درمان ترکیبی ممکن است بر پاسخ پذیری بیماری های نورونی موثر باشد.

کلیدواژه‌ها

موضوعات


[1] S. Elmore, “Apoptosis: a review of programmed cell death,” Toxicol. Pathol., vol. 35, no. 4, pp. 495–516, 2007.
[2] A. Lawen, “Apoptosis—an introduction,” Bioessays, vol. 25, no. 9, pp. 888–896, 2003.
[3] N. E. Crook, R. J. Clem, and L. K. Miller, “An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif,” J. Virol., vol. 67, no. 4, pp. 2168–2174, 1993.
[4] B. M. Reza et al., “Combination therapy in combating cancer,” Oncotarget, vol. 8, no. 3, pp. 3822–3843, 2017.
[5] M. Asadi et al., “Caspase‐3: structure, function, and biotechnological aspects,” Biotechnol. Appl. Biochem., vol. 69, no. 4, pp. 1633–1645, 2022.
[6] W. C. Earnshaw, L. M. Martins, and S. H. Kaufmann, “Mammalian caspases: structure, activation, substrates, and functions during apoptosis,” Annu. Rev. Biochem., vol. 68, no. 1, pp. 383–424, 1999.
[7] G. M. Cohen, “Caspases: the executioners of apoptosis,” Biochem. J., vol. 326, no. 1, pp. 1–16, 1997.
[8] N. Van Opdenbosch and M. Lamkanfi, “Caspases in cell death, inflammation, and disease,” Immunity, vol. 50, no. 6, pp. 1352–1364, 2019.
[9] M. M. Shipley, C. A. Mangold, and M. L. Szpara, “Differentiation of the SH-SY5Y human neuroblastoma cell line,” JoVE (Journal Vis. Exp., no. 108, p. e53193, 2016.
[10] K. Mehdizadeh, F. Ataei, and S. Hosseinkhani, “Treating MCF7 breast cancer cell with proteasome inhibitor Bortezomib restores apoptotic factors and sensitizes cell to Docetaxel,” Med. Oncol., vol. 38, no. 6, p. 64, 2021.
[11] M. Torkzadeh-Mahani, F. Ataei, M. Nikkhah, and S. Hosseinkhani, “Design and development of a whole-cell luminescent biosensor for detection of early-stage of apoptosis,” Biosens. Bioelectron., vol. 38, no. 1, pp. 362–368, 2012.
[12] K. Mehdizadeh, F. Ataei, and S. Hosseinkhani, “Effects of doxorubicin and docetaxel on susceptibility to apoptosis in high expression level of survivin in HEK and HEK-S cell lines as in vitro models,” Biochem. Biophys. Res. Commun., vol. 532, no. 1, pp. 139–144, 2020.
[13] M. Tiwari et al., “Apoptosis in mammalian oocytes: a review,” Apoptosis, vol. 20, pp. 1019–1025, 2015.
[14] S. Mukhopadhyay, P. K. Panda, N. Sinha, D. N. Das, and S. K. Bhutia, “Autophagy and apoptosis: where do they meet?,” Apoptosis, vol. 19, pp. 555–566, 2014.
[15] T.-J. Fan, L.-H. Han, R.-S. Cong, and J. Liang, “Caspase family proteases and apoptosis,” Acta Biochim. Biophys. Sin. (Shanghai)., vol. 37, no. 11, pp. 719–727, 2005.
[16] C. Riccardi and I. Nicoletti, “Analysis of apoptosis by propidium iodide staining and flow cytometry,” Nat. Protoc., vol. 1, no. 3, pp. 1458–1461, 2006.
[17] S. A. Latt, G. Stetten, L. A. Juergens, H. F. Willard, and C. D. Scher, “Recent developments in the detection of deoxyribonucleic acid synthesis by 33258 Hoechst fluorescence.,” J. Histochem. Cytochem., vol. 23, no. 7, pp. 493–505, 1975.
[18] W. Yaoxian, Y. Hui, Z. Yunyan, L. Yanqin, G. Xin, and W. Xiaoke, “Emodin induces apoptosis of human cervical cancer hela cells via intrinsic mitochondrial and extrinsic death receptor pathway,” Cancer Cell Int., vol. 13, no. 1, pp. 1–8, 2013.
[19] S. Kumar, A. S. Pathania, A. K. Saxena, R. A. Vishwakarma, A. Ali, and S. Bhushan, “The anticancer potential of flavonoids isolated from the stem bark of Erythrina suberosa through induction of apoptosis and inhibition of STAT signaling pathway in human leukemia HL-60 cells,” Chem. Biol. Interact., vol. 205, no. 2, pp. 128–137, 2013.
[20] A. M. Alabsi et al., “Induction of caspase-9, biochemical assessment and morphological changes caused by apoptosis in cancer cells treated with goniothalamin extracted from Goniothalamus macrophyllus,” Asian Pacific J. Cancer Prev., vol. 14, no. 11, pp. 6273–6280, 2013.
[21] J. Pham, B. Brownlow, and T. Elbayoumi, “Mitochondria-specific pro-apoptotic activity of genistein lipidic nanocarriers,” Mol. Pharm., vol. 10, no. 10, pp. 3789–3800, 2013.
[22] B. Kim, S. K. Srivastava, and S.-H. Kim, “Caspase-9 as a therapeutic target for treating cancer,” Expert Opin. Ther. Targets, vol. 19, no. 1, pp. 113–127, 2015.
[23] U. Fischer and K. Schulze-Osthoff, “Apoptosis-based therapies and drug targets,” Cell Death Differ., vol. 12, no. 1, pp. 942–961, 2005.
[24] X. Zhou, A. Di Stasi, and M. K. Brenner, “iCaspase 9 suicide gene system,” Gene Ther. Solid Cancers Methods Protoc., pp. 87–105, 2015.
[25] J. D. Iuliucci et al., “Intravenous safety and pharmacokinetics of a novel dimerizer drug, AP1903, in healthy volunteers,” J. Clin. Pharmacol., vol. 41, no. 8, pp. 870–879, 2001.
[26] Q. TONG et al., “Natural jasmonates of different structures suppress the growth of human neuroblastoma cell line SH‐SY5Y and its mechanisms 1,” Acta Pharmacol. Sin., vol. 29, no. 7, pp. 861–869, 2008.
[27] A. J. Primeau, A. Rendon, D. Hedley, L. Lilge, and I. F. Tannock, “The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors,” Clin. Cancer Res., vol. 11, no. 24, pp. 8782–8788, 2005.
[28] S. Sharifi, J. Barar, M. S. Hejazi, and N. Samadi, “Doxorubicin changes Bax/Bcl-xL ratio, caspase-8 and 9 in breast cancer cells,” Adv. Pharm. Bull., vol. 5, no. 3, p. 351, 2015.