Investigation of bacterial diversity of Aq-Darreh gold mine and determination of their resistance to arsenic and silver

Document Type : Original Research

Authors

Department of Biology, Payame Noor University, P.B:19395-4697, Tehran, Iran.

Abstract
Microorganisms play an important role in formation of mines. In this research, the bacteria inhabiting in Aq-Darreh Takab gold mine were isolated and compared with agricultural soils. The isolates were characterized using 16S rDNA sequencing and the homology searches were performed using BlastN, EzTaxon, and RDP Classifier web tools. Resistance of the isolates was also investigated against arsenic and silver in the presence and absence of 3.5 ppm gold. Although the control soil showed a wide variety of bacterial diversity (43 isolates belonging to 13 genera), only 17 isolates belonging to 11 genera were isolated from mine soils including Acinetobacter, Agrobacterium, Comamonas, Deinococcus, Listeria, Microbacterium, Micrococcus, Pseudomonas, Rhizobium, Roseomonas and Staphylococcus. Among the isolates, A. radiobacter, D. ficus, M. antarcticus, M. luteus, R. radiobacter and R. selenitidurans were able to tolerate different amounts of arsenic and silver in the presence of gold, among which A. radiobacter and D. ficus showed the highest resistance in such a way that they grew in the presence of 50 ppm arsenic, 50 ppm silver, and 3.5 ppm gold. Our results showed that bacterial diversity in soils containing gold, silver and arsenic metals is less than agricultural soils. It was also found that the bacterial diversity in gold mines depends on the amount of gold and the amount and type of associated elements. Due to high resistance of two endogenous bacterial species to arsenic and silver, A. radiobacter and D. ficus, have also the potential for industrial purposes in environments contaminated with these metals.

Keywords

Subjects


1. Southam G, Saunders JA. (2005). The geomicrobiology of ore deposits. Economic geology.; 100:1067–1084.
2. Hassanvand A, Saadatmand S, Lari Yazdi H, Iranbakhsh A R. (2022). Investigation of Antioxidant, Antimicrobial and Anticancer Potential of Silver Nanoparticles Synthesized by Viola tricolor L. Extract. JAST; 24 (4): 885-900URL: http://jast.modares.ac.ir/article-23-48826-en.html
3. Johnston CW, Wyatt MA, Li X, Ibrahim A, Shuster J, Magarvey NA. (2013). Gold biomineralization by a metallophore from a gold-associated microbe. Nature Chemical Biology. 9: 241–243.
4. Reith F, Lengke M, Falconer D, Craw D, Southam G. (2007). The geomicrobiology of gold. ISME Journal. 1(7):567–584.
5. Reith F, Rogers SL, McPhail DC, Webb D. (2006). Biomineralization of gold: Biofilms on bacterioform gold. Science. 313:333–336.
6. Reith F, Fairbrother L, Nolze G, Wilhelmi O, Clode P. (2010). Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation. Geology. 38 (9): 843-846
7. Mergeay M, Monchy S, Vallaeys T. (2003). Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: Towards a catalogue of metal-responsive genes. FEMS Microbiology Reviews. 27:385–410.
8. Kerr RA. (2006). Bacteria help grow nuggets from Dirt. Science. 313(5784): 159-166 DOI: 10.1126/science.313.5784.159a
9. Reith F, Mcphail DC, Christy AG. (2005). Bacillus cereus, gold and associated elementsin soil and regolith sampls from Tomakin Park Gold Mine in south eastern New South Wales. Journal of Geochemical Exploration. 85: 81-89
10. Zouboulis AI, Loukidou MX, Matis K. (2004). Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochemistry. 39(8); 909-916
11. Mandal BK1, Suzuki KT. (2002). Arsenic round the world: a review. Talanta. 16;58(1): 201-35.
12. Drewniak L, Styczek A, Sklodowska A. (2007). Arsenic Hypertolerant Bacteria Isolated from Gold Mine Rocks Biofilms. Advanced Materials Research. 20(21): 576-576,
13. Yamamura S, Ike M, Fujita M. (2003). Dissimilatory arsenate reduction by a facultative anaerobe, Bacillus sp. Strain SF-1. Bioscience Bioengineering. 96: 454-460
14. Kavynifard A, Ebrahimipour G, Ghasempour A. (2016). Optimization of crude oil degradation by Dietzia cinnamea KA1, capable of biosurfactant production. Journal of Basic Microbiology. 56(5):566-75. doi: 10.1002/jobm.201500386.
15. Sanger F, Nicklen S, Coulson AR. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America.74(12):5463-5467. doi:10.1073/pnas.74.12.5463
16. Nosáľová L, Maliničová L, Kisková J, Timková I, Sedláková-Kaduková, Pristaš P. (2021). Cultivable Microbiota Associated with Gold Ore from the Rozália Gold Mine, Hodruša-Hámre, Slovakia, Geomicrobiology Journal. 38:5, 415-425, DOI: 10.1080/01490451.2021.1871685
17. Hol JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. (1994). Bergey's Manual of Determinative Bacteriology. Maryland USA: Williams Wilkins.
18. Ulfata M, Abada Z, Alic NM, Sarwarb S, Jabeenb K, Abrar A. (2021). Screening, biochemical characterization and antibiotics resistance/susceptibility of bacteria isolated from native soil and water samples. Brazilian Journal of Biology. 84, e254016. https://doi.org/10.1590/1519-6984.254016
19. Mandal, D.; Aghababaei, M.; Das, S.K.; Majumder, S.; Chatterjee, D.; Basu, A. (2022). Isolation and Identification of Arsenic Hyper-Tolerant Bacterium with Potential Plant Growth Promoting Properties from Soil. Minerals. 12, 1452. https://doi.org/10.3390/min12111452.
20. Bartelme RP, Custer JM, Dupont CHL, Espinoza JL, Torralba M, Khalili B, Carini P. (2020). Influence of substrate concentration on the culturability of heterotrophic soil microbes isolated by highthroughput dilution-to-extinction cultivation. mSphere. 5(1): e00024–20.
21. Reith F, McPhailDC. (2006). Effect of resident microbiota on the solubilization of gold in soils from the Tomakin Park Gold Mine, New South Wales, Australia. Geochimica et Cosmochimica Acta. 70:1421–1438.
22. Sibanda T, Selvarajan R, Tekere M. (2017). Synthetic extreme environments: overlooked sources of potential biotechnologically relevant microorganisms. Microbial Biotechnology. 10(3):570–585.
23. Sibanda T, Selvarajan R, Msagati T. (2019). Defunct gold mine tailings are natural reservoir for unique bacterial communities revealed by high-throughput sequencing analysis. Science of The Total Environment. 650 (2): 2199-2209.
24. Jiang Y, Li Q, Chen X, Jiang C. (2016). Isolation and Cultivation Methods of Actinobacteria. Actinobacteria - Basics and Biotechnological Applications [Internet]. 11; Available from: http://dx.doi.org/10.5772/61457
25. Missiakas DM, Schneewind O. (2018). Growth and laboratory maintenance of Staphylococcus aureus. Current Protocols in Microbiology. 9: 1- 9
26. Li M, Haixia T, Wang L, Duan J. (2017). Bacterial diversity in Linglong gold mine, China. Geomicrobiology Journal. 34(3):267–273.
27. Tomczyk - Zak K, Kaczanowski S, Drewniak L, Dmoch L, Sklodowska A, Zielenkiewicz U. (2013). Bacterial diversity and arsenic mobilization in rock biofilm from an ancient gold and arsenic mine. Science of the Total Environment. 461–462(1):330–340.
28. Drewniak L, Styczek A, Majder-Lopatka M, Sklodowska A. (2008). Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environment Pollution. 156(3):1069–1074.
29. Reith F, Rea MAD, Sawley P, Zammit CM, Nolze G, Reith T, Rantanen K, Bissett A. (2018). Biogeochemical cycling of gold: Transforming gold particles from arctic Finland. Chemistry Geology. 483: 511–529.
30. Letnik I, Avrahami R, Port R, Greiner A, Zussman E, Rokem JS, Greenblatt C. (2017). Biosorption of copper from aqueous environments by Micrococcus luteus in cell suspension and when encapsulated. International Biodeterioration and Biodegradation. 116:64–72.
31. Uniyal S, Rawat M, Rai JPN. (2013). Cadmium biosorption by Stenotrophomonas humi and Micrococcus luteus: kinetics, equilibrium and thermodynamic studies. Desalination and Water Treatment. 51(40–42): 7721–7731.
32. Grigor’eva NV, Kondrat’eva TF, Krasil’nikova EN, Karavaiko GI. (2006). Mechanism of cyanide and thiocyanate decomposition by an association of Pseudomonas putida and Pseudomonas stutzeri strains. Microbiology. 75(3):266–273.
33. Gericke M, Pinches A. (2006). Microbial production of gold nanoparticles. Gold Bulletin. 39(1):22–28.
34. Rana S, Mishra P, Ab Wahid Z, Thakur S, Pant D, Singh L. (2020). Microbe-mediated sustainable bio-recovery of gold from low-grade precious solid waste: A microbiological overview. Journal of Environmental Sciences. 1;89:47-64.
35. Deng W, Yang Y, GaoHao P, Wenting C, Sun W. (2016). Radiation-Resistant Micrococcus luteus SC1204 and Its Proteomics Change Upon Gamma Irradiation. Current Microbiology. 72(6): 767–775
36. Levchenko LA, Sadkov AP, Lariontseva NV, Koldasheva EM, Shilova AK, Shilov AE. (2020). Gold helps bacteria to oxidize methane. Journal of Inorganic Biochemistry. 88:251-3.
37. Slade D, Radman M. (2011). Oxidative Stress Resistance in Deinococcus radiodurans. Microbiology and Molecular Biology Reviews. 75(1):133-91
38. Abreu IA. (2008). The kinetic mechanism of manganese-containing superoxide dismutase from Deinococcus radiodurans: a specialized enzyme for the elimination of high superoxide concentrations. Biochemistry. 47:2350-2356
39. Asker D, Awad TS, McLandsborough L, Beppu T, Ueda K. (2011). Deinococcus depolymerans sp. nov., a gamma- and UV-radiation-resistant bacterium, isolated from a naturally radioactive site. International Journal of Systematic and Evolutionary. 61(Pt 6):1448-1453. doi: 10.1099/ijs.0.013482-0. Epub 2010 Jul 9. PMID: 20622051.
40. Daly MJ. (2009). A new perspective on radiation resistance based on Deinococcus radiodurans. Nature Review Microbiology. 7:237-245
41. Zhang Sh, Yang H, Ma P, Luan Z, Tong L, Jin Z, Sand W. (2022). Column bio-oxidation of low-grade refractory gold ore containing high-arsenic and high-sulfur: Insight on change in microbial community structure and sulfide surface corrosion. Minerals Engineering. 175. 107201.
42. Kashyap DR, Botero LM, Franck WL, Hassett DJ, McDermott TR. (2006). Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. Journal of Bacteriology. 2006; 188(3):1081-8. doi: 10.1128/JB.188.3.1081-1088. PMID: 16428412; PMCID: PMC1347330.
43. Ji H, Zhang Y, Bararunyeretse P, Li H. (2018). Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain. Ecotoxicology and Environmental Safety. 165; 182-193