In silico study of the structure of FK domain in follistatin-like protein 1

Document Type : Original Research

Authors

1 PhD student in biochemistry, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran

2 Associate Professor of Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.

3 Associate Professor of Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran4 Associate Professor of Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran

4 Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran

Abstract
Aim: Follistatin-like protein 1 (FSTL1) is a secreted glycoprotein that plays an important role in regulating cell survival, proliferation, differentiation, migration, inflammation, and modulating the immune system. The FK domain in FSTL1 has 10 conserved cysteine residues that form 5 disulfide bonds. Despite extensive studies on the function of FSTL1, limited structural information is available about this biologically important molecule.

Materials and Methods:Using the SWISS-MODEL server and using the crystal structure of the FK domain of the mouse FSTL1 protein with the code (PDB: 6jzw) as a template, structural models of the FK domain of the human FSTL1 protein were prepared. In the next step, the resulting structures were checked using Swiss-PDB Viewer 4.10, Chimera 1.12 software, Ramachandaran diagram and PDBSUM server, in terms of the distance between two cysteine residues, the modeling error range, and the formation of disulfide bonds. Molecular dynamics simulations were performed using the AMBER software package with the ff14SB force field.

Results: The results showed that the FK domain without disulfide bond has root mean square deviations (RMSD) and root mean square fluctuations (RMSF), higher than the native FK domain. In addition, the radius of gyration in domain without disulfide bonds is significantly lower than that of native FK domain. The results show that the disulfide bonds of the FK domain play a role in the stability of the structural folding of the FK domain and the removal of these bonds increases the structural flexibility of this domain.

Keywords

Subjects


1. Hambrock, H. (2004). O, Kaufmann B, Müller S, Hanisch F, G, Nose K, Paulsson M, Maurer P, Hartmann U. Structural characterization of TSC-36/Flik: analysis of two charge isoforms. J Biol Chem, 279, 11727-11735.
2. Li, X., Li, L., Chang, Y., Ning, W., & Liu, X. (2019). Structural and functional study of FK domain of Fstl1. Protein Science, 28(10), 1819-1829.‌
3. Johnston, I. M., Spence, H. J., Winnie, J. N., McGarry, L., Vass, J. K., Meagher, L., & Ozanne, B. W. (2000). Regulation of a multigenic invasion programme by the transcription factor, AP-1: re-expression of a down-regulated gene, TSC-36, inhibits invasion. Oncogene, 19(47), 5348-5358.‌ https://doi.org/10.1038/sj.onc.1203927.
4. Kawabata, D., Tanaka, M., Fujii, T., Umehara, H., Fujita, Y., Yoshifuji, H., ... & Ozaki, S. (2004). Ameliorative effects of follistatin‐related protein/TSC‐36/FSTL1 on joint inflammation in a mouse model of arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 50(2), 660-668.‌
5. Niekraszewicz, B., & Niekraszewicz, A. (2009). The structure of alginate, chitin and chitosan fibres. In Handbook of textile fibre structure. Woodhead Publishing, 230, 266-304.
6. Miyabe, M., Ohashi, K., Shibata, R., Uemura, Y., Ogura, Y., Yuasa, D., ... & Ouchi, N. (2014). Muscle-derived follistatin-like 1 functions to reduce neointimal formation after vascular injury. Cardiovascular research, 103(1), 111-120.‌
7. Jafari, S. S., Jafarian, V., Khalifeh, K., Ghanavatian, P., & Shirdel, S. A. (2016). The effect of charge alteration and flexibility on the function and structural stability of sweet-tasting brazzein. RSC advances, 6(64), 59834-59841.‌
8. Ni, X., Cao, X., Wu, Y., & Wu, J. (2018). FSTL1 suppresses tumor cell proliferation, invasion and survival in non-small cell lung cancer. Oncology Reports, 39(1), 13-20.‌
9. Mattiotti, A., Prakash, S., Barnett, P., & van den Hoff, M. J. (2018). Follistatin-like 1 in development and human diseases. Cellular and Molecular Life Sciences, 75(13), 2339-2354.‌
10. Chaly, Y., Blair, H. C., Smith, S. M., Bushnell, D. S., Marinov, A. D., Campfield, B. T., & Hirsch, R. (2015). Follistatin-like protein 1 regulates chondrocyte proliferation and chondrogenic differentiation of mesenchymal stem cells. Annals of the rheumatic diseases, 74(7), 1467-1473.
11. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, 25(13), 1605-1612.‌
12. Ouchi, N., Oshima, Y., Ohashi, K., Higuchi, A., Ikegami, C., Izumiya, Y., & Walsh, K. (2008). Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. Journal of Biological Chemistry, 283(47), 32802-32811.
13. Ogura, Y., Ouchi, N., Ohashi, K., Shibata, R., Kataoka, Y., Kambara, T., ... & Murohara, T. (2012). Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation, 126(14), 1728-1738.‌
14. Sumitomo, K., Kurisaki, A., Yamakawa, N., Tsuchida, K., Shimizu, E., Sone, S., & Sugino, H. (2000). Expression of a TGF-β1 inducible gene, TSC-36, causes growth inhibition in human lung cancer cell lines. Cancer letters, 155(1), 37-46.‌
15. Trombetta-eSilva, J., & Bradshaw, A. D. (2012). Suppl 1: the function of SPARC as a mediator of fibrosis. The open rheumatology journal, 6, 146.
16. Sundaram, G. M., Common, J. E., Gopal, F. E., Srikanta, S., Lakshman, K., Lunny, D. P.,& Sampath, P. (2013). ‘See-saw’expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature, 495(7439), 103-106.‌
17. Sylva, M., Moorman, A. F. M., & Van den Hoff, M. J. B. (2013). Follistatin‐like 1 in vertebrate development. Birth Defects Research Part C: Embryo Today: Reviews, 99(1), 61-69.
18. Shi, D. L., Shi, G. R., Xie, J., Du, X. Z., & Yang, H. (2016). MicroRNA-27a inhibits cell migration and invasion of fibroblast-like synoviocytes by targeting follistatin-like protein 1 in rheumatoid arthritis. Molecules and cells, 39(8), 611.
19. Xi, Y., Gong, D. W., & Tian, Z. (2016). FSTL1 as a potential mediator of exercise-induced cardioprotection in post-myocardial infarction rats. Scientific reports, 6(1), 1-11.
20. Xu, C., Jiang, T., Ni, S., Chen, C., Li, C., Zhuang, C., & Wang, Y. (2020). FSTL1 promotes nitric oxide-induced chondrocyte apoptosis via activating the SAPK/JNK/caspase3 signaling pathway. Gene, 732, 144339.‌
21. Chaly, Y., Marinov, A. D., Oxburgh, L., Bushnell, D. S., & Hirsch, R. (2012). FSTL1 promotes arthritis in mice by enhancing inflammatory cytokine/chemokine expression. Arthritis & Rheumatism, 64(4), 1082-1088.
22. Wu, J., Dong, Y., Teng, X., Cheng, M., Shen, Z., & Chen, W. (2015). Follistatin-like 1 attenuates differentiation and survival of erythroid cells through Smad2/3 signaling. Biochemical and Biophysical Research Communications, 466(4), 711-716.‌
23. Farzannia, A., Roghanian, R., Zarkesh-Esfahani, S. H., Nazari, M., & Emamzadeh, R. (2015). FcUni-RLuc: an engineered Renilla luciferase with Fc binding ability and light emission activity. Analyst, 140(5), 1438-1441.
24. Miyamae, T., Marinov, A. D., Sowders, D., Wilson, D. C., Devlin, J., Boudreau, R., ... & Hirsch, R. (2006). Follistatin-like protein-1 is a novel proinflammatory molecule. The Journal of Immunology, 177(7), 4758-4762.‌
25. Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo Jr, R., KMM, O. A., Simmerling, C., Wang, B., and Woods, RJ (2005). The Amber biomolecular simulation programs. J. Comput. Chem, 26, 1668-1688.‌
26. Greenfield, N. J., & Pietruszko, R. (1977). Two aldehyde dehydrogenases from human liver. Isolation via affinity chromatography and characterization of the isozymes. Biochimica Biophysica Acta (BBA)-Enzymology, 483(1), 35-45.‌
27. Chan, Q. K., Ngan, H. Y., Ip, P. P., Liu, V. W., Xue, W. C., & Cheung, A. N. (2009). Tumor suppressor effect of follistatin-like 1 in ovarian and endometrial carcinogenesis—a differential expression and functional analysis. Carcinogenesis, 30(1), 114-121.
28. Emamzadeh, R., Nazari, M., & Najafzadeh, S. (2014). Adherent state apoptosis assay (ASA): a fast and reliable method to detect apoptosis in adherent cells. Analytical Methods, 6(12), 4199-4204.‌
29. Fang, Y., Zhang, S., Li, X., Jiang, F., Ye, Q., & Ning, W. (2017). Follistatin like-1 aggravates silica-induced mouse lung injury. Scientific Reports, 7(1), 1-12.‌
30. Ding, F., & Peng, W. (2019). Probing the local conformational flexibility in receptor recognition: mechanistic insight from an atomic-scale investigation. RSC advances, 9(25), 13968-13980.‌
31. Chidambaram, S., Ali, D., Alarifi, S., Gurusamy, R., Radhakrishnan, S., & Akbar, I. (2021). Tyrosinase-mediated synthesis of larvicidal active 1, 5-diphenyl pent-4-en-1-one derivatives against Culex quinquefasciatus and investigation of their ichthyotoxicity. Scientific reports, 11(1), 1-18.‌
32. Alteköester, A. K., & Harvey, R. P. (2015). Bioengineered FSTL1 patches restore cardiac function following myocardial infarction. Trends in Molecular Medicine, 21(12), 731-733.
33. Mukherjee, J., & Gupta, M. N. (2015). Increasing importance of protein flexibility in designing biocatalytic processes. Biotechnology Reports, 6, 119-123. ‌
34. Nazari, M., Zarnani, A. H., Ghods, R., Emamzadeh, R., Najafzadeh, S., Minai-Tehrani, A., ... & Nejadmoghaddam, M. R. (2017). Optimized protocol for soluble prokaryotic expression, purification and structural analysis of human placenta specific-1 (PLAC1). Protein Expression and Purification, 133, 139-151.‌
35. Jafari, S.S., Emamzadeh, R., Nazari, M., S. Jafari., M.R., & Ganjalikhany. (2023). Investigation of 36-32 disulfide bond in structural changes and flexibility of FK domain of FSTL1 protein: An in silico study. Cellular and Molecular Research (Iranian Journal of Biology).‌