1. Adusumilli PS, Cha E, Cornfeld M, Davis T, Diab A, Dubensky TW, et al. New Cancer Immunotherapy Agents in Development: A report from an associated program of the 31stAnnual Meeting of the Society for Immunotherapy of Cancer, 2016. J Immunother Cancer. 2017;5(1).
2. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell. 2017;168(4):707–23.
3. Devaud C, John LB, Westwood JA, Darcy PK, Kershaw MH. Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy. Oncoimmunology. 2013;2(8).
4. Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2015;25(4):198–213.
5. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: Removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27(8):1482–92.
6. Drew M. Pardoll. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev cancer. 2016;97(11):252–64.
7. Mohammadi P, Hesari M, Chalabi M, Salari F, Khademi F. An overview of immune checkpoint therapy in autoimmune diseases. Int Immunopharmacol. 2022;107.
8. D.S. S, A. R. The evolution of checkpoint blockade as a cancer therapy: What’s here, what’s next? Curr Opin Immunol [Internet]. 2015;33((Shin D.S.; Ribas A., aribas@mednet.ucla.edu) Department of Medicine, Division of Hematology-Oncology, University of California Los Angeles (UCLA), Los Angeles, United States):23–35. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L601592513%5Cnhttp://dx.doi.org/10.1016/j.coi.2015.01.006%5Cnhttp://sfx.library.uu.nl/utrecht?sid=EMBASE&issn=18790372&id=doi:10.1016%2Fj.coi.2015.01.006&atitle=The+evolution+of+chec
9. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer. N Engl J Med. 2012;366(26):2443–54.
10. Zou W, Wolchok JD, Chen L, Weiping Z, Jedd D. W, Lieping C. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy. Sci Transl Med. 2016;8(328):1–34.
11. Wang J, Yuan R, Song W, Sun J, Liu D, Li Z. PD-1, PD-L1 (B7-H1) and Tumor-Site Immune Modulation Therapy: The Historical Perspective. J Hematol Oncol. 2017;10(1).
12. Himmel ME, Saibil SD, Saltman AP. Immune checkpoint inhibitors in cancer immunotherapy. Cmaj. 2020;192(24):E651.
13. Couzin-Frankel J. Cancer immunotherapy. Science (80- ). 2013;342(6165):1432–3.
14. Holmgaard RB, Zamarin D, Munn DH, Wolchok JD, Allison JP. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J Exp Med. 2013;210(7):1389–402.
15. Zhai L, Lauing KL, Chang AL, Dey M, Qian J, Cheng Y, et al. The role of IDO in brain tumor immunotherapy. J Neurooncol. 2015;123(3):395–403.
16. Sonpavde G, Necchi A, Gupta S, Steinberg GD, Gschwend JE, Van Der Heijden MS, et al. ENERGIZE: A Phase III study of neoadjuvant chemotherapy alone or with nivolumab with/without linrodostat mesylate for muscle-invasive bladder cancer. Futur Oncol. 2019;16(2):4359–68.
17. Wathoni N, Puluhulawa LE, Joni IM, Muchtaridi M, Mohammed AFA, Elamin KM, et al. Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer. Drug Deliv. 2022;29(1):2959–70.
18. Yoo J, Park C, Yi G, Lee D, Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers (Basel). 2019;11(5).
19. Yu B, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol. 2010;27(7):286–98.
20. Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology. 2020;9(1).
21. Kanekiyo M, Wei CJ, Yassine HM, McTamney PM, Boyington JC, Whittle JRR, et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature. 2013;499(7456):102–6.
22. Alvi M, Yaqoob A, Rehman K, Shoaib SM, Akash MSH. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives. AAPS Open. 2022;8(1).
23. Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release. 2003;90(3):261–80.
24. Sanaz Sheikhzadeh , Nowruz Delirezh RH. PREPARATION AND CHARACTERIZATION OF TUMOR CELL LYSATE AND POLY-IC LOADED POLY (LACTIC-CO-GLYCOLIC ACID) NANOPARTICLES AND EVALUATION OF THEIR ANTITUMOR EFFECTS IN MOUSE MODEL OF BREAST CANCER. Stud Med Sci. 2018;29(8):584.
25. Sheikhzadeh S, Delirezh N, Hobbenaghi R. Mannosylated polylactic-co-glycolic acid (MN-PLGA) nanoparticles induce potent anti-tumor immunity in murine model of breast cancer. Biomed Pharmacother. 2021;142.
26. Haddadi A, Hamdy S, Ghotbi Z, Samuel J, Lavasanifar A. Immunoadjuvant activity of the nanoparticles’ surface modified with mannan. Nanotechnology. 2014;25(35).
27. Marslin G, Revina AM, Khandelwal VKM, Balakumar K, Prakash J, Franklin G, et al. Delivery as nanoparticles reduces imatinib mesylate-induced cardiotoxicity and improves anticancer activity. Int J Nanomedicine. 2015;10:3163–70.
28. Rathee J, Kaur A, Kanwar R, Kaushik D, Kumar R, Salunke DB, et al. Polymeric Nanoparticles as a Promising Drug Delivery Platform for the Efficacious Delivery of Toll-Like Receptor 7/8 Agonist and IDO-Inhibitor. Colloids Surfaces A Physicochem Eng Asp. 2022;632.
29. Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: microenvironment-targeting combinations. Cell Res. 2020;30(6):507–19.
30. Kalbasi A, Ribas A. Antigen presentation keeps trending in immunotherapy resistance. Clin Cancer Res. 2018;24(14):3239–41.
31. Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: Correlating particle sizes and the resultant immune responses. Expert Rev Vaccines. 2010;9(9):1095–107.
32. S. S, T.K.S. M, H.A.E. B, Y. C. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J Pharm Sci [Internet]. 2009;98(3):812–43. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L354354580%5Cnhttp://www3.interscience.wiley.com/cgi-bin/fulltext/120839833/PDFSTART%5Cnhttp://dx.doi.org/10.1002/jps.21493%5Cnhttp://sfx.metabib.ch/sfx_locater?sid=EMBASE&issn=00223
33. Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, et al. Size-Dependent Immunogenicity: Therapeutic and Protective Properties of Nano-Vaccines against Tumors. J Immunol. 2004;173(5):3148–54.
34. Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today. 2014;9(2):223–43.
35. Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA. Polymeric particles in vaccine delivery. Curr Opin Microbiol. 2010;13(1):106–12.
36. Silva AL, Rosalia RA, Varypataki E, Sibuea S, Ossendorp F, Jiskoot W. Poly-(lactic-co-glycolic-acid)-based particulate vaccines: Particle uptake by dendritic cells is a key parameter for immune activation. Vaccine. 2015;33(7):847–54.
37. Díez-Pascual AM. Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. Materials (Basel). 2022;15(9).
38. Kim GJ, Nie S. Targeted cancer nanotherapy. Mater Today. 2005;8(8 SUPPL.):28–33.
39. Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, et al. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine. 2008;26(39):5046–57.
40. Hamdy S, Haddadi A, Hung RW, Lavasanifar A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev. 2011;63(10–11):943–55.
41. Cao J, Choi JS, Oshi MA, Lee J, Hasan N, Kim J, et al. Development of PLGA micro- and nanorods with high capacity of surface ligand conjugation for enhanced targeted delivery. Asian J Pharm Sci. 2019;14(1):86–94.
42. Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine delivery systems: Size matters. AAPS J. 2013;15(1):85–94.
43. Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm. 2005;298(2):315–22.
44. Mohammadi-Samani S, Taghipour B. PLGA micro and nanoparticles in delivery of peptides and proteins; Problems and approaches. Pharm Dev Technol. 2015;20(4):385–93.
45. Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 2002;82(1):105–14.
46. Swider E, Koshkina O, Tel J, Cruz LJ, de Vries IJM, Srinivas M. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater. 2018;73:38–51.
47. Slimane M, Gaye I, Ghoul M, Chebil L. Mesoscale Modeling and Experimental Study of Quercetin Organization as Nanoparticles in the Poly-lactic- co-glycolic Acid/Water System under Different Conditions. Ind Eng Chem Res. 2020;59(10):4809–16.
48. Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun. 2020;11(1).
49. Limited MI. Zeta potential: An Introduction in 30 minutes. Zetasizer Nano Serles Tech Note MRK654-01 [Internet]. 2011;2:1–6. Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Zeta+Potential+An+Introduction+in+30+Minutes#0
50. Juttulapa M, Piriyaprasarth S, Sriamornsak P. Effect of ph on stability of oil-in-water emulsions stabilized by pectin-zein complexes. Adv Mater Res. 2013;747:127–30.
51. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water soluble drug. J Control Release. 1999;57(2):171–85.
52. Kimura S, Egashira K, Nakano K, Iwata E, Miyagawa M, Tsujimoto H, et al. Local delivery of imatinib mesylate (STI571)-incorporated nanoparticle ex vivo suppresses vein graft neointima formation. Circulation. 2008;118(14 Suppl).