1. Philips A, Lamburn G. Natural and human-activity-generated electromagnetic fields on Earth. Child Cancer. 2012;
2. Teknologi J, Syafiq M, Azizi N, Salleh A, Othman A, Azlan N, et al. NON-IONIZING (ULTRA-WIDEBAND FREQUENCY) ELECTROMAGNETIC RADIATION EFFECT ON NERVE FIBER ACTION POTENTIAL OF HUMAN BODY. Vol. 78. 2016.
3. Ng K-H. Non-Ionizing Radiations-Sources, Biological Effects, Emissions and Exposures.
4. Juutilainen J, Research SL-MR-R in M, 1997 undefined. Genotoxic, carcinogenic and teratogenic effects of electromagnetic fields. Introduction and overview. infona.pl.
5. Gaestel M. Biological monitoring of non-thermal effects of mobile phone radiation: Recent approaches and challenges. Biol Rev. 2010 Aug;85(3):489–500.
6. Ashoori F, Hajipour-Verdom B, Satari M, Abdolmaleki P. Polyethylenimine-based Magnetic Nanocomplexes Enhanced Cisplatin Toxicity on Ovarian Cancer Cells in Presence of Static Magnetic Field. 2021;
7. Satari M, Javani Jouni F, Abolmaleki P, Soleimani H. Influence of static magnetic field on HeLa and Huo2 Cells in the presence of Aloe Vera extract. Asian Pacific J Cancer Prev. 2021;22(S1):9–15.
8. Syafiq M, Azizi N, Azlan MAN, Salleh A, Othman A. Non-ionizing electromagnetic radiation effect on nerve fiber action potential of human body-A review Wireless Electrical via Electromagnetic Induction View project antenna View project. 2015;
9. Abodolmaleki P, Cancer NH-M, 2018 undefined. The Effects of Synthesized Superparamagnetic Iron Oxide Nanoparticles and Electromagnetic Field on Cell Death of MCF-7 Breast Cancer Cell Line. mcijournal.com [Internet]. [cited 2018 May 30]; Available from: http://mcijournal.com/article-1-64-en.html
10. Johnson C, IEEE AG-P of the, 1972 undefined. Nonionizing electromagnetic wave effects in biological materials and systems. ieeexplore.ieee.org.
11. Barth A, Winker R, … EP-S-O and, 2008 undefined. A meta-analysis for neurobehavioural effects due to electromagnetic field exposure emitted by GSM mobile phones. oem.bmj.com.
12. Cardis E, Dosimetry MK-RP, 1999 undefined. International case-control study of adult brain, head and neck tumours: results of the feasibility study. academic.oup.com.
13. Schüz J, Waldemar G, Olsen JH, Johansen C. Risks for central nervous system diseases among mobile phone subscribers: A Danish retrospective cohort study. PLoS One. 2009 Feb;4(2).
14. Lai H. Neurological effects of non-ionizing electromagnetic fields. 2012;
15. The Effect of Microwave on The Central Nervous System”. - Google Scholar [Internet]. [cited 2020 Oct 22]. Available from: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Effect+of+Microwave+on+The+Central+Nervous+System”.+&btnG=
16. Warille AA, Onger ME, Turkmen AP, Deniz G, Altun G, Yurt KK, et al. Controversies on electromagnetic field exposure and the nervous systems of children. Histol Histopathol. 2016;31(5):461–8.
17. reviews PK-C treatment, 2010 undefined. Epidemiology of childhood cancer. Elsevier.
18. Lai H. Neurological Effects of Radiofrequency Electromagnetic Radiation Relating to Wireless Communication Technology.
19. Preece AW, Iwi G, Davies-Smith A, Wesnes K, Butler S, Lim E, et al. Effect of a 915-MHz simulated mobile phone signal on cognitive function in man. Int J Radiat Biol. 1999;75(4):447–56.
20. Volkow N, Tomasi D, Wang G, Vaska P, Jama JF-, 2011 undefined. Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. jamanetwork.com.
21. Rubtsova N, Perov S, Belaya O, Kuster N, Balzano Q. Near-field radiofrequency electromagnetic exposure assessment. Electromagn Biol Med. 2015 Jul;34(3):180–2.
22. Dimbylow PJ, Mann SM. SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900 MHz and 1.8 GHz. Phys Med Biol. 1994;39(10):1537–53.
23. Dimbylow PJ. FDTD calculations of the SAR for a dipole closely coupled to the head at 900 MHz and 1.9 GHz. Phys Med Biol. 1993;38(3):361–8.
24. Martens L, Moerloose J De, … DDZ-R, 1995 undefined. Calculation of the electromagnetic fields induced in the head of an operator of a cordless telephone. Wiley Online Libr.
25. Frey AH. Headaches from cellular telephones: Are they real and what are the implications? Vol. 106, Environmental Health Perspectives. Public Health Services, US Dept of Health and Human Services; 1998. p. 101–3.
26. Terzi M, Ozberk B, Deniz OG, Kaplan S. The role of electromagnetic fields in neurological disorders. J Chem Neuroanat. 2016;75:77–84.
27. A review of the potential health hazards of radio... - Google Scholar.
28. Pathological Effects of Radio Waves - M. S. Tolgskaya - Google Books.
29. Roberti B, Heebels G, … JH-A of the N, 1975 undefined. Preliminary investigations of the effects of low-level microwave radiation on spontaneous motor activity in rats. europepmc.org.
30. Kaplan S, Deniz OG, Önger ME, Türkmen AP, Yurt KK, Aydın I, et al. Electromagnetic field and brain development. J Chem Neuroanat. 2016;75:52–61.
31. YA Lobanova - Effects of Radiofrequency Electromagnetic Fields " ZV …, 1974 undefined. Investigation on the susceptibility of animal to microwave irradiation following treatment with pharmacologic agents.
32. Albert EN, DeSantis M. DO MICROWAVES ALTER NERVOUS SYSTEM STRUCTURE? Ann N Y Acad Sci. 1975;247(1):87–108.
33. Chang BK, Huang AT, Joines WT, Kramer RS. The effect of microwave radiation (1.0 GHz) on the blood‐brain barrier in dogs. Radio Sci. 1982;17(5 S):165S-168S.
34. Lin JC, Lin MF. Studies on microwave and blood‐brain barrier interaction. Bioelectromagnetics. 1980;1(3):313–23.
35. Lin JC, Lin MF. Microwave Hyperthermia-Induced Blood-Brain Barrier Alterations. Radiat Res. 1982 Jan;89(1):77.
36. Finnie J, Blumbergs P, Manavis J, Pathology TU-, 2002 undefined. Effect of long-term mobile communication microwave exposure on vascular permeability in mouse brain. Elsevier.
37. Neilly JP, Lin JC. Interaction of ethanol and microwaves on the blood‐brain barrier of rats. Bioelectromagnetics. 1986;7(4):405–14.
38. Williams W, Cerro M Del, Reviews SM-BR, 1984 undefined. Effect of 2450 MHz microwave energy on the blood-brain barrier to hydrophilic molecules. B. Effect on the permeability to HRP. Elsevier.
39. Ward TR, Ali JS. Blood‐brain barrier permeation in the rat during exposure to low‐power 1.7‐GHz microwave radiation. Bioelectromagnetics. 1985;6(2):131–43.
40. Williams W, Hoss W, reviews MF-B research, 1984 undefined. Effect of 2450 MHz microwave energy on the blood—brain barrier to hydrophilic molecules. A. Effect on the permeability to sodium fluorescein. Elsevier.
41. Frey A, Feld S, Sci BF-ANA, 1975 undefined. Neural function and behavior: defining the relationship. ehtrust.org.
42. Merritt JH, Chamness AF, Allen SJ. Studies on blood-brain barrier permeability after microwave-radiation. Radiat Environ Biophys. 1978 Dec;15(4):367–77.
43. Sırav B, neuroanatomy NS-J of chemical, 2016 undefined. Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood–brain barrier in male & female rats. Elsevier.
44. Roth BJ, Basser PJ. A Model of the Stimulation of a Nerve Fiber by Electromagnetic Induction MRI Project View project Diffusion exchange spectroscopic imaging for biological applications View project. 1990;
45. Hinrikus H, Lass J, Annual TT-P of the 25th, 2003 undefined. Low-level microwave effect on nerve pulse propagation velocity. ieeexplore.ieee.org.
46. Shneider MN, Pekker M. Non-thermal mechanism of weak microwave fields influence on neurons. J Appl Phys. 2013 Sep;114(10).
47. Hinrikus H, Bachmann M, Karai D, Lass J. Mechanism of low-level microwave radiation effect on nervous system. Electromagn Biol Med. 2017 Apr;36(2):202–12.
48. Johnson Liakouris AG. Radiofrequency (RF) sickness in the lilienfeld study: An effect of modulated microwaves? Arch Environ Health. 1998 May;53(3):236–8.
49. Hocking B. Microwave sickness: a reappraisal.
50. Khurana VG, Hardell L, Everaert J, Bortkiewicz A, Ahonen M. Epidemiological Evidence for a Health Risk from Mobile Phone Base Stations Epidemiological Evidence for a Health Risk from Mobile Phone Base Stations. Int J Occup Environ Health. 2013;3525(March 2016):263–7.
51. Blake Levitt B, Lai H, Lai H. Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ Rev. 2010;18:369–95.
52. Pall ML. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med. 2013 Aug;17(8):958–65.
53. Walleczek J. Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J [Internet]. 1992 [cited 2017 Jun 11]; Available from: http://www.fasebj.org/content/6/13/3177.short
54. Lisi A, Ledda M, Rosola E, Pozzi D, D’Emilia E, Giuliani L, et al. Extremely low frequency electromagnetic field exposure promotes differentiation of pituitary corticotrope-derived AtT20 D16V cells. Bioelectromagnetics. 2006 Dec;27(8):641–51.
55. Li Y, Yan X, Liu J, Li L, Hu X, Sun H, et al. Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel- and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neurons. Neurochem Int. 2014;75:96–104.
56. Llinas R, Sugimori M, Hillman D, neurosciences BC-T in, 1992 undefined. Distribution and functional significance of the P-type, voltage-dependent Ca2+ channels in the mammalian central nervous system. Elsevier.
57. Neuronal Calcium Signaling Review.
58. Leach V, Weller S, Redmayne M. A novel database of bio-effects from non-ionizing radiation. Rev Environ Health. 2018;33(3):273–80.
59. ORSAA website. Data Dictionary for use in selection of fields for downloading in CSV files. Available from: http://www.orsaa.org/orsaa-database.html.
60. Hao Y-H, Zhao L, Peng R-Y. Effects of microwave radiation on brain energy metabolism and related mechanisms. Mil Med Res. 2015;2(1):1–8.
61. Toledano MB, Auvinen A, Tettamanti G, Cao Y, Feychting M, Ahlbom A, et al. An international prospective cohort study of mobile phone users and health (COSMOS): Factors affecting validity of self-reported mobile phone use. Int J Hyg Environ Health. 2018;221(1):1–8.
62. Morgan LL. Estimating the risk of brain tumors from cellphone use: Published case–control studies. Pathophysiology. 2009;16(2–3):137–47.
63. Betskii O V, Devyatkov ND, Kislov V V. Low intensity millimeter waves in medicine and biology. Crit Rev Biomed Eng. 2000;28(1&2).
64. Crutcher RM, Kemball AJ. Review of Zeeman Effect Observations of Regions of Star Formation. Front Astron Sp Sci. 2019;6:66.
65. Dasdag S, Akdag MZ. The link between radiofrequencies emitted from wireless technologies and oxidative stress. J Chem Neuroanat. 2016;75:85–93.
66. Haghighat N, Abdolmaleki P, Behmanesh M, Satari M. Stable morphological-physiological and neural protein expression changes in rat bone marrow mesenchymal stem cells treated with electromagnetic field and nitric oxide. Bioelectromagnetics [Internet]. 2017 Dec 1 [cited 2017 Nov 18];38(8):592–601. Available from: http://doi.wiley.com/10.1002/bem.22072
67. Mattson MP. Metal‐catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Ann N Y Acad Sci. 2004;1012(1):37–50.
68. Fedoce A das G, Ferreira F, Bota RG, Bonet-Costa V, Sun PY, Davies KJA. The role of oxidative stress in anxiety disorder: cause or consequence? Free Radic Res. 2018;52(7):737–50.
69. Yin H, Xu L, Porter N. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev [Internet]. 2011 [cited 2016 Jan 27]; Available from: http://pubs.acs.org/doi/full/10.1021/cr200084z
70. Catalá A, Díaz M. Impact of lipid peroxidation on the physiology and pathophysiology of cell membranes. Front Physiol. 2016;7:423.
71. Van der Paal J, Neyts EC, Verlackt CCW, Bogaerts A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem Sci. 2016;7(1):489–98.
72. Ando K, Fujita M. Reactive oxygen species and the central nervous system in salt‐sensitive hypertension: possible relationship with obesity‐induced hypertension. Clin Exp Pharmacol Physiol. 2012;39(1):111–6.
73. Pall M. Electromagnetic fields act via activation of voltage‐gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med [Internet]. 2013 [cited 2017 May 4]; Available from: http://onlinelibrary.wiley.com/doi/10.1111/jcmm.12088/full
74. Sun Z, Ge J, Guo B, Guo J, Hao M, Wu Y, et al. Extremely low frequency electromagnetic fields facilitate vesicle endocytosis by increasing presynaptic calcium channel expression at a central synapse. Sci Rep. 2016;6(1):1–11.
75. Li Y, Yan X, Liu J, Li L, Hu X, Sun H, et al. Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel-and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neurons. Neurochem Int. 2014;75:96–104.
76. Leszczynski D. Review of the scientific evidence on the individual sensitivity to electromagnetic fields (EHS). Rev Environ Health. 2021;
77. Rubin GJ, Hahn G, Everitt BS, Cleare AJ, Wessely S. Are some people sensitive to mobile phone signals? Within participants double blind randomised provocation study. Bmj. 2006;332(7546):886–91.
78. Levallois P, Neutra R, Lee G, Hristova L. Study of self-reported hypersensitivity to electromagnetic fields in California. Environ Health Perspect. 2002;110(suppl 4):619–23.
79. Leach V, Weller S. Radio frequency exposure risk assessment and communication: Critique of ARPANSA TR-164 report. Do we have a problem. Radiat Prot Australas. 2017;34(2):9–18.