استفاده از عصاره بذر گیاه Tribulus terrestris به عنوان یک منبع زیستی در سنتز نانوذرات نقره و ارزیابی اثرات آنتی باکتریال این نانوذرات

نوع مقاله : پژوهشی اصیل

نویسنده

استادیار گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه سمنان، سمنان، ایران

چکیده
روش‌های سبز به عنوان یک ابزار کم هزینه، زیست سازگار و بهینه برای سنتز نانوذرات شناخته شده‌اند. از آنجا که روش‌های دیگری برای تولید نانوذرات وجود دارند، اما روش سنتز سبز به نحوی برتری و مزایای منحصر به فرد خود را به اثبات رسانده است و در نتیجه نیازی به استفاده از روش‌های پرهزینه، سمی، زمان‌بر و نامطلوب نیست. سنتز نانو ذرات نقره با استفاده از بذر خارخاسک Tribulus terrestris به عنوان روشی سبز در این تحقیق مورد بررسی قرار گرفت. خارخاسک جزء گیاهان دارویی است که در طب سنتی از آن جهت درمان بیماری‌های عفونی مجاری ادراری، دفع سنگ کلیه، تسکین دردهای روماتیسمی، کاهش فشار خون و بهبود عملکرد کبد استفاده می‌شود. در این مطالعه سنتز سبز نانوذرات نقره با عصاره بذر و بررسی مورفولوژی، اندازه و خصوصیات ساختاری نانوذرات با استفاده ازXRD، UV-visible،FT-IR و SEM انجام شد. آنالیز طیف سنجی UV-visible وجود پیک جذبی در ناحیه 429 نانومتر که حاکی از سنتز نانوذرات نقره است را نشان می هد. نتایج حاصل از پراش اشعه ایکس (XRD) نیز تشکیل ساختار کریستالی نانوذرات را تایید کرد. نتایج قطر هاله عدم رشد برای باکتری باسیلوس سوبتیلیس بیشتر از اشرشیاکولی مشاهده شد به عبارتی اشرشیاکولی مقاومت بیشتری را در مقابل نانوذرات سنتز شده نشان داد. نتایج این پژوهش نشان می دهد سنتز سبز نانوذرات نقره با استفاده از عصاره بذر گیاه خارخاسک می‌تواند به عنوان یک عامل آنتی باکتریال مناسب در برابر پاتوژن های بالینی مورد استفاده قرارگیرد.

کلیدواژه‌ها

موضوعات


[1] Govindaraju, K., Tamilselvan, S., Kiruthiga, V., Singaravelu, G. (2010) BIogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopest. 3, 394–399.
[2] Hu, C.M.J. Aryal, S. Zhang, L. (2010) Nanoparticle-assisted combination therapies for effective cancer treatment, Ther. Deliv. 1, 323‒334.
[3] Haley, B. Frenkel, E. (2008) Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 26, 57-64.
[4] Wu, X. Liu, H. Liu, J. Haley, KN. Treadway, J.A. Larson, JP. (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41-46.
[5] Jeevanandam1, J., Barhoum, A., Chan1, Y. S., Dufresne, A. and Danquah. M.K (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9. 1050–1074.
[6] Nadagouda, MN., Hoag, G., Collins, J., Varma, RS. (2009) Green synthesis of Au nanostructures at room temperature using biodegradable plant surfactants. Cryst Growth Des. 9, 4979–4983.
[7] Bhattacharya, D., Rajinder, G. (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol. 25, 199–204.
[8] Mukherjee, A., Roy, M., Mandal, BP., Dey, GK., Mukherjee, PK., Ghatak, J., et al. (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus asperellum. Nanotechnology 19, 075103.
[9] Allafchian, AR., Jalali, AH., Aghaei, F., Farhang, HR. (2018) Green synthesis of silver nanoparticles using Glaucium corniculatum (L.) Curtis extracts andevaluation of its Antibacterial activity. IET Nanobiotechnol. 12, 574–578.
[10] Vithiya, K., Sen, S. (2011) Biosynthesis of nanoparticles. Int J Pharm Sci Res. 2 , 2781– 2785.
[11] Reddy, NJ., Nagoor Vagoor Vali, D., Ranimand Rani, S. (2014) Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by piper longum fruit mater. Sci Eng C mater Biol. 1, 115–122.
[12] Elemike, E., Onwudiwe, DC., Ekennia, A., Jordaan, A. (2018) Synthesis and characterisation of silver nanoparticles using leaf extract of Artemisi aafra and them in vitro antimicrobial and antioxidant activities. IET Nanobiotechnol. 12, 722–726.
[13] Canillac, N., Mourey, A. (2001) Antibacterial activity of the essential oil of Piceaexcelsa on Listeria, Staphylococcus aureus and coliform bacteria. Food Microbiology. 18, 261–268.
[14] Shahnia, M., Khaksar, R. (2013) Antimicrobial effects and determination of minimum inhibitory concentration (MIC) methods of essential oils against pathogenic bacteria. Iranian Journal of Nutrition Sciences and Food Technology. 7, 949–955.
[15] Georgiev, GI., Ivanova, A., Mechkarova, P., Ivanova, A. and Popova L. (2010) Rate and forms of mineral nutrition CAN influence dry matter accumulation and saponin content of Puncture Vine (T. terrestris L.). Biotechnol Biotechnol Equip. 24, 49-52.
[16] Hassan, LG., Umar, K.J. and Umar, Z. (2007) Antinutritive factors in T. terrestris (Linn) leaves and predicted calcium and zinc bioavailability. J. Trop. Biosci. 7, 33-36.
[17]. Kostova, I. and Dinchev, D. (2005) Saponins in T. terrestris–chemistry and bioactivity. Phytochemistry Reviews. 4, 111-137.
[18] Kang, SY., Jung, HW., Nam, JH., Kim, WK., Kang, JS., Kim, YH., Cho, CW., Cho, CW., Park, YK. and Bae, HS. (2017) Effects of the fruit extract of T.terrestris on skin inflammation in mice with Oxazoloneinduced atopic dermatitis through regulation of calcium channels, Orai-1 and TRPV3, and mast cell activation . Evid Based Complement Alternat Med. 2017, 8312946.
[19] Baburao, B., Rajyalakshmi, G., Venkatesham, A., Kiran, G., Shyamsunder, A. and Gangarao, B.( 2009) Anti inflammatory and antimicrobial activities of methanolic extract of T. terrestris linn plant. Int. J. Chem. Sci. 7, 1867 -1872.
[20] Zheleva-Dimitrova, DI., Obreshkova, DA . and Nedialkov, P. (2012) Antioxidant activity of T. terrestris— a natural product in infertility therapy. Int. J. Pharm. Pharm. Sci. 4, 508-511.
[21] Singh, V., Shrivastava, A and Wahi, N. (2015) Biosynthesis of silver nanoparticles by plants crude extracts and their characterization using UV, XRD, TEM and EDX. Afr. J. Biotechnol. 14, 2554-2567.
[22] Suvith, V. S., Philip, D. (2014) Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticleS. Spectrochim. Acta, Part A. 118, 526-532.
[23] Kharat, S. N., Mendhulkar, V. D. (2016) Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract Mater. Sci. Eng. C. 62, 719-724.
[24] Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y.,
Shao, W., He, N. (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 18, 105104.
[25] Hwang, J.J., Ma, T.W. (2012) Preparation, morphology, and antibacterial properties of polyacrylonitrile/montmorillonite/silver nanocomposites. Mater. Chem. Phys. 136, 613-623.
[26] Sarker, S.D., Nahar, L., Kumarasamy, Y. (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals.
Methods. 42, 321-324.
[27] Singleton, V.L. Orthofer, R. Lamuela-Raventos, R.M. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152-178.
[28] Callister, W.D. Rethwisch, D.G. (2018) Materials Science And Engineering, 10th ed. 50–54.
[29] Shankar, S. S., Rai, A., Ahmad, A., Sastry, M. (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275, 496-502.
[30] Kumar, V., Bano, D., Mohan, S., Singh, D. K., Hasan, S. H. (2016 ) Sunlight-induced green synthesis of silver nanoparticles using aqueous leaf extract of Polyalthia longifolia and its antioxidant activity. Mater. Lett. 181, 371-377.
[31] Balasundram, N. Sundram, K. Samman, S. (2006) Phenolic compounds in plants and agri-industrial byproducts: Antioxidant activity, occurrence, and potential uses. Food Chem. 99, 191-203.
[32] Lin, D. Xiao, M. Zhao, J. Li, Z. Xing, B. Li, X. Kong, M. Li, L. Zhang, Q. Liu, Y. (2016) An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 21, 1374.
[33] Jalilian, F. Chahardoli, A. Sadrjavadi, K. Fattahi, A. Shokoohinia, Y. (2020) Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv. Powder Technol. 31, 1323.
[34] Singh, P. Kim, Y.J. Yang, D.C. (2015) A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif Cells Nanomed Biotechnol. 44,1949-1957.
[35] Xia, QH. Zheng, LP., Zhao, PF. Wang, JW. (2017) Biosynthesis of silver nanoparticles using Artemisia annua callus for inhibiting stem-end bacteria in cut carnation flowers. IET. Nanobiotechnol. 11,185-192.
[36] Zhang, Z. Xin, X. Zho, G. Li, Q. Veeraraghavan, V.P. Mohan, S.K. Wang, D. Liu, F. (2019) Green synthesis of silver nanoparticles from Alpinia officinarum mitigates cisplatin-induced nephrotoxicity via down-regulating apoptotic pathway in rats. Artif Cells Nanomed Biotechnol. 47, 3215-3221.
[37] Adhikari, A. Lamichhane, C. Adhikari, A. Gyawali, G. Acharya, D. Baral, E. R. Chhetri, K. (2022) Green Synthesis of Silver Nanoparticles Using Artemisia vulgaris Extract and Its Application toward Catalytic and Metal-Sensing Activity. Inorganic. 10, 113-125.
[38] Burt, S. (2004) Essential oils: their antibacterial properties and potential applications in foods. Int. J. Food Microbiol. 94, 223-253.
[39] Malakootian, M. Toolabi, A. (2010) Determining and comparing the effct of nanoparticle CuO, TiO2 and ZnO in removing gram positive and gram negative bactria from waste water. J. Toloo Behdasht. 9, 1-11.
[40] Asadi, M. Khosravi-Darani, K. Mortazavi, S. Hajseyed Javadi, N. Azadnia, E. Kiani Harchegani, A. (2014) Antimicrobial effect of silver nanoparticles prodused by chemical reduction on Staphylococcus aureus and Escheirchia coli. Iran. J. Nutr. Sci. Food Technol. 8, 83-92.
[41] Shahraki, S. Shahraki, T. (2018) Investigation of antioxidant, anti-bacterial properties and binding to human serum albumin in the Cressa cretica L. grown in the Sistan region. EJMP. 6,11-20.
[42] Alizade, H. Salouti, M. Shapouri, R. Abdollazadeh, P. Naseryan, J. (2012) Antibacrial effect of silver nanoparticles on Brucella Melitensis 16M in an animal model in vitro. AMUJ. 14, 64-70.