1. DeSantis, C., et al., Breast cancer statistics, 2013. CA: a cancer journal for clinicians, 2014. 64(1): p. 52-62.
2. Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA: a cancer journal for clinicians, 2013. 63(1): p. 11-30.
3. Austin, L.T., et al., Breast and cervical cancer screening in Hispanic women: a literature review using the health belief model. Women's Health Issues, 2002. 12(3): p. 122-128.
4. Siegel, R.L., et al., Cancer statistics, 2023. Ca Cancer J Clin, 2023. 73(1): p. 17-48.
5. Rundhaug, J.E., Matrix metalloproteinases and angiogenesis. Journal of cellular and molecular medicine, 2005. 9(2): p. 267-285.
6. Ramadass, S.K., et al., Paclitaxel/epigallocatechin gallate coloaded liposome: a synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells. Colloids and surfaces B: Biointerfaces, 2015. 125: p. 65-72.
7. Marín, V., et al., The potential role of Epigallocatechin-3-Gallate (EGCG) in breast cancer treatment. International Journal of Molecular Sciences, 2023. 24(13): p. 10737.
8. Khan, N. and H. Mukhtar, Cancer and metastasis: prevention and treatment by green tea. Cancer and Metastasis Reviews, 2010. 29(3): p. 435-445.
9. Vaishnavi Jahagirdar, S.M., et al., An Overview Of EGCG And Its Potential Effects On Breast Cancer Cells. Journal of Pharmaceutical Negative Results, 2023: p. 800-806.
10. Cooper, R., D.J. Morré, and D.M. Morré, Medicinal benefits of green tea: part II. Review of anticancer properties. Journal of Alternative & Complementary Medicine, 2005. 11(4): p. 639-652.
11. Min, K.-j. and T.K. Kwon, Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integrative medicine research, 2014. 3(1): p. 16-24.
12. Sang, S., et al., The chemistry and biotransformation of tea constituents. Pharmacological research, 2011. 64(2): p. 87-99.
13. Shtay, R., et al., Encapsulation of (─)-epigallocatechin-3-gallate (EGCG) in solid lipid nanoparticles for food applications. Journal of food engineering, 2019. 244: p. 91-100.
14. Fang, J.-Y., et al., Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas. Journal of dermatological science, 2006. 42(2): p. 101-109.
15. Zucker, D., et al., Liposome drugs' loading efficiency: a working model based on loading conditions and drug's physicochemical properties. Journal of controlled release, 2009. 139(1): p. 73-80.
16. Monticelli, L., et al., The MARTINI coarse-grained force field: extension to proteins. Journal of chemical theory and computation, 2008. 4(5): p. 819-834.
17. Van Der Spoel, D., et al., GROMACS: fast, flexible, and free. Journal of computational chemistry, 2005. 26(16): p. 1701-1718.
18. Potter, T.D., et al., Partitioning into phosphatidylcholine–cholesterol membranes: liposome measurements, coarse-grained simulations, and implications for bioaccumulation. Environmental Science: Processes & Impacts, 2023.
19. Andersen, H.C., Molecular dynamics simulations at constant pressure and/or temperature. The Journal of chemical physics, 1980. 72(4): p. 2384-2393.
20. Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Physical review A, 1985. 31(3): p. 1695.
21. Essmann, U., et al., A smooth particle mesh Ewald method. The Journal of chemical physics, 1995. 103(19): p. 8577-8593.
22. DeLano, W.L., PyMOL. 2002.
23. Zhu, W., et al., Molecular insight into affinities of gallated and nongallated proanthocyanidins dimers to lipid bilayers. Scientific reports, 2016. 6: p. 37680.
24. Genheden, S. and L.A. Eriksson, Estimation of liposome penetration barriers of drug molecules with all-atom and coarse-grained models. Journal of chemical theory and computation, 2016. 12(9): p. 4651-4661.
25. Lyu, Y., et al., Characterization of interactions between curcumin and different types of lipid bilayers by molecular dynamics simulation. The Journal of Physical Chemistry B, 2018. 122(8): p. 2341-2354.
26. Mishra, K. and A.K. Jain, Liposomes: An Emerging Approach for the Treatment of Cancer. Current Pharmaceutical Design, 2021.
27. Sharma, A. and U.S. Sharma, Liposomes in drug delivery: progress and limitations. International journal of pharmaceutics, 1997. 154(2): p. 123-140.
28. Winterhalter, M. and D.D. Lasic, Liposome stability and formation: experimental parameters and theories on the size distribution. Chemistry and physics of lipids, 1993. 64(1-3): p. 35-43.
29. Inglut, C.T., et al., Immunological and toxicological considerations for the design of liposomes. Nanomaterials, 2020. 10(2): p. 190.
30. De Pace, R.C.C., et al., Anticancer activities of (−)-epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells. Journal of liposome research, 2013. 23(3): p. 187-196.
31. Filippi, A., et al., Epigallocatechin-3-O-gallate alleviates the malignant phenotype in A-431 epidermoid and SK-BR-3 breast cancer cell lines. International journal of food sciences and nutrition, 2018. 69(5): p. 584-597.
32. Pan, X., et al., Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells. Journal of Pharmacological Sciences, 2016. 130(2): p. 85-93.