[1] Chakraborty, I., & Maity, P. (2020). COVID-19 outbreak: Migration, effects on society, global environment and prevention. Science of the total environment, 728, 138882.
[2] Covid, W. (19). Coronavirus pandemic.
[3] Pal, M., Berhanu, G., Desalegn, C., & Kandi, V. (2020). Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. Cureus, 12(3).
[4] Dehelean, C. A., Lazureanu, V., Coricovac, D., Mioc, M., Oancea, R., Marcovici, I., ... & Cretu, O. (2020). SARS-CoV-2: repurposed drugs and novel therapeutic approaches—insights into chemical structure—biological activity and toxicological screening. Journal of clinical medicine, 9(7), 2084.
[5] Beigel, J. H., Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil, A. C., ... & Lane, H. C. (2020). Remdesivir for the treatment of Covid-19—preliminary report. New England Journal of Medicine, 383(19), 1813-1836.
[6] Cavalcanti, A. B., Zampieri, F. G., Rosa, R. G., Azevedo, L. C., Veiga, V. C., Avezum, A., ... & Berwanger, O. (2020). Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. New England Journal of Medicine, 383(21), 2041-2052.
[7] Horby, P., Lim, W. S., Emberson, J., Mafham, M., Bell, J., Linsell, L., ... & Landray, M. J. (2020). Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report. medRxiv. 2020; 2020.06. 22.20137273. Publisher Full Text.
[8] Aygün, İ., Kaya, M., & Alhajj, R. (2020). Identifying side effects of commonly used drugs in the treatment of Covid 19. Scientific reports, 10(1), 21508.
[9] Kumari, M., Lu, R. M., Li, M. C., Huang, J. L., Hsu, F. F., Ko, S. H., ... & Wu, H. C. (2022). A critical overview of current progress for COVID-19: development of vaccines, antiviral drugs, and therapeutic antibodies. Journal of biomedical science, 29(1), 68.
[10] Yu, W., & MacKerell, A. D. (2017). Computer-aided drug design methods. Antibiotics: methods and protocols, 85-106.
[11] Lin, Y. (2022). Review of Modern Computer-aided Drug Design Methods. International Journal of Biology and Life Sciences, 1(1), 47-50.
[12] Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 300(5626), 1763-1767.
[13] Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., ... & Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289-293.
[14] Chakraborty, C., Bhattacharya, M., Mallick, B., Sharma, A. R., Lee, S. S., & Agoramoorthy, G. (2021). SARS-CoV-2 protein drug targets landscape: a potential pharmacological insight view for the new drug development. Expert review of clinical pharmacology, 14(2), 225-237.
[15] Rohaim, M. A., El Naggar, R. F., Clayton, E., & Munir, M. (2021). Structural and functional insights into non-structural proteins of coronaviruses. Microbial pathogenesis, 150, 104641.
[16] Lichimo, K. (2022). 3CLpro: The discovery of host cell substrates and its relevance as a drug target for SARS-CoV-2 variants of concern. Undergraduate Journal of Experimental Microbiology and Immunology, 6.
[17] Razali, R., Asis, H., & Budiman, C. (2021). Structure-function characteristics of SARS-CoV-2 proteases and their potential inhibitors from microbial sources. Microorganisms, 9(12), 2481.
[18] ul Qamar, M. T., Alqahtani, S. M., Alamri, M. A., & Chen, L. L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of pharmaceutical analysis, 10(4), 313-319.
[19] Goyal, B., & Goyal, D. (2020). Targeting the dimerization of the main protease of coronaviruses: a potential broad-spectrum therapeutic strategy. ACS combinatorial science, 22(6), 297-305.
[20] Turlington, M., Chun, A., Tomar, S., Eggler, A., Grum-Tokars, V., Jacobs, J., ... & Stauffer, S. R. (2013). Discovery of N-(benzo [1, 2, 3] triazol-1-yl)-N-(benzyl) acetamido) phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and noncovalent nanomolar inhibitors with an induced-fit binding. Bioorganic & medicinal chemistry letters, 23(22), 6172-6177.
[21] Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., & Sauerhering, L. & Hilgenfeld, R.(2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409-412.
[22] Harnkit, N., Khongsonthi, T., Masuwan, N., Prasartkul, P., Noikaew, T., & Chumnanpuen, P. (2022). Virtual Screening for SARS-CoV-2 Main Protease Inhibitory Peptides from the Putative Hydrolyzed Peptidome of Rice Bran. Antibiotics, 11(10), 1318.
[23] Hernández González, J. E., Eberle, R. J., Willbold, D., & Coronado, M. A. (2022). A computer-aided approach for the discovery of D-peptides as inhibitors of SARS-CoV-2 main protease. Frontiers in molecular biosciences, 8, 816166.
[24] Gutierrez-Villagomez, J. M., Campos-García, T., Molina-Torres, J., López, M. G., & Vázquez-Martínez, J. (2020). Alkamides and piperamides as potential antivirals against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The journal of physical chemistry letters, 11(19), 8008-8016.
[25] Antonopoulou, I., Sapountzaki, E., Rova, U., & Christakopoulos, P. (2022). Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature’s toolbox of bioactive compounds. Computational and Structural Biotechnology Journal, 20, 1306-1344.
[26] Bahun, M., Jukić, M., Oblak, D., Kranjc, L., Bajc, G., Butala, M., ... & Ulrih, N. P. (2022). Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols. Food chemistry, 373, 131594.
[27] Santana, K., Do Nascimento, L. D., Lima e Lima, A., Damasceno, V., Nahum, C., Braga, R. C., & Lameira, J. (2021). Applications of virtual screening in bioprospecting: facts, shifts, and perspectives to explore the chemo-structural diversity of natural products. Frontiers in Chemistry, 9, 662688.
[28] Gupta, S., Singh, A. K., Kushwaha, P. P., Prajapati, K. S., Shuaib, M., Senapati, S., & Kumar, S. (2021). Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. Journal of Biomolecular Structure and Dynamics, 39(12), 4334-4345.
[29] Gurung, A. B., Ali, M. A., Lee, J., Farah, M. A., & Al-Anazi, K. M. (2020). Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life sciences, 255, 117831.
[30] Jukič, M., Janežič, D., & Bren, U. (2021). Potential novel thioether-amide or guanidine-linker class of sars-cov-2 virus rna-dependent rna polymerase inhibitors identified by high-throughput virtual screening coupled to free-energy calculations. International Journal of Molecular Sciences, 22(20), 11143.
[31] Jiménez-Avalos, G., Vargas-Ruiz, A. P., Delgado-Pease, N. E., Olivos-Ramirez, G. E., Sheen, P., Fernández-Díaz, M., ... & Zimic, M. (2021). Comprehensive virtual screening of 4.8 k flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 MPRO. Scientific Reports, 11(1), 15452.
[32] Khamto, N., Utama, K., Tateing, S., Sangthong, P., Rithchumpon, P., Cheechana, N., ... & Meepowpan, P. (2023). Discovery of Natural Bisbenzylisoquinoline Analogs from the Library of Thai Traditional Plants as SARS-CoV-2 3CLPro Inhibitors: In Silico Molecular Docking, Molecular Dynamics, and In Vitro Enzymatic Activity. Journal of Chemical Information and Modeling, 63(7), 2104-2121.
[33] Newman, D. J., & Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of natural products, 70(3), 461-477.
[34] Jo, S., Kim, S., Shin, D. H., & Kim, M. S. (2020). Inhibition of SARS-CoV 3CL protease by flavonoids. Journal of enzyme inhibition and medicinal chemistry, 35(1), 145-151.
[35] Kolarič, A., Jukič, M., & Bren, U. (2022). Novel small-molecule inhibitors of the SARS-CoV-2 spike protein binding to neuropilin 1. Pharmaceuticals, 15(2), 165.
[36] Amporndanai, K., Meng, X., Shang, W., Jin, Z., Rogers, M., Zhao, Y., ... & Samar Hasnain, S. (2021). Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nature communications, 12(1), 3061.
[37] Jin, Z., Zhao, Y., Sun, Y., Zhang, B., Wang, H., Wu, Y., ... & Rao, Z. (2020). Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nature structural & molecular biology, 27(6), 529-532.
[38] Ramos‐Guzmán, C. A., Ruiz‐Pernía, J. J., & Tuñón, I. (2021). Inhibition mechanism of SARS‐CoV‐2 main protease with ketone‐based inhibitors unveiled by multiscale simulations: insights for improved designs. Angewandte Chemie International Edition, 60(49), 25933-25941.
[39] Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., ... & Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289-293.
[40] Kumar, A., Rai, A., Khan, M. S., Kumar, A., Haque, Z. U., Fazil, M., & Rabbani, G. (2022). Role of herbal medicines in the management of patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials. Journal of traditional and complementary medicine, 12(1), 100-113.
[41] Zrig, A. (2022). The effect of phytocompounds of medicinal plants on coronavirus (2019-NCOV) infection. Pharmaceutical chemistry journal, 55(10), 1080-1084.
[42] Süntar, I. (2020). Importance of ethnopharmacological studies in drug discovery: role of medicinal plants. Phytochemistry Reviews, 19(5), 1199-1209.
[43] Hossain, R., Sarkar, C., Hassan, S. M. H., Khan, R. A., Arman, M., Ray, P., ... & Calina, D. (2022). In silico screening of natural products as potential inhibitors of SARS-CoV-2 using molecular docking simulation. Chinese journal of integrative medicine, 28(3), 249-256.
[44] Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2021). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 39(12), 4362-4374.
[45] Su, H., Yao, S., Zhao, W., Li, M., Liu, J., Shang, W., ... & Xu, Y. (2020). Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in vitro. BioRxiv, 2020-04.
[46] Listiyani, P., Kharisma, V. D., Ansori, A. N. M., Widyananda, M. H., Probojati, R. T., Murtadlo, A. A. A., ... & Zainul, R. (2022). In silico phytochemical compounds screening of Allium sativum targeting the Mpro of SARS-CoV-2. Pharmacognosy Journal, 14(3).
[47] Mlozi, S. H. (2022). The role of natural products from medicinal plants against COVID-19: traditional medicine practice in Tanzania. Heliyon, 8(6).
[48] Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & Van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European biophysics journal, 40, 843-856.
[49] Meza, J. C. (2010). Steepest descent. Wiley Interdisciplinary Reviews: Computational Statistics, 2(6), 719-722.
[50] Bornot, A., Etchebest, C., & De Brevern, A. G. (2011). Predicting protein flexibility through the prediction of local structures. Proteins: Structure, Function, and Bioinformatics, 79(3), 839-852.
[51] Burgoyne, N. J., & Jackson, R. M. (2006). Predicting protein interaction sites: binding hot-spots in protein–protein and protein–ligand interfaces. Bioinformatics, 22(11), 1335-1342.
[52] Harnkit, N., Khongsonthi, T., Masuwan, N., Prasartkul, P., Noikaew, T., & Chumnanpuen, P. (2022). Virtual Screening for SARS-CoV-2 Main Protease Inhibitory Peptides from the Putative Hydrolyzed Peptidome of Rice Bran. Antibiotics, 11(10), 1318.
[53] Lau, J. L., & Dunn, M. K. (2018). Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic & medicinal chemistry, 26(10), 2700-2707.
[54] Al Musaimi, O., Lombardi, L., Williams, D. R., & Albericio, F. (2022). Strategies for Improving Peptide Stability and Delivery. Pharmaceuticals, 15(10), 1283.
[55] Mahlapuu, M., Björn, C., & Ekblom, J. (2020). Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Critical reviews in biotechnology, 40(7), 978-992.
[56] S. Ketabchi and M. Papari Moghadamfard. (2021) Medicinal Plants Effective in the Prevention and Control of Coronaviruses. Complement. Med. J., vol. 10, no. 4, pp. 296–307.
[57] Zrieq, R., Ahmad, I., Snoussi, M., Noumi, E., Iriti, M., Algahtani, F. D., ... & Kadri, A. (2021). Tomatidine and patchouli alcohol as inhibitors of SARS-CoV-2 enzymes (3CLpro, PLpro and NSP15) by molecular docking and molecular dynamics simulations. International Journal of Molecular Sciences, 22(19), 10693.