1) de Araújo F F, de Neri-Numa I A, Farias D, de P, Cunha G R M C da, Pastore G M. Wild Brazilian species of Eugenia genera (Myrtaceae) asaninnovation hotspot for food and pharmacological purposes. Food Research International; 121: 57-72 .2019 ,
2) Rasouli H, Farzaei M H, Khodarahmi R. Polyphenols and their benefits: A review. International Journal of Food Properties; 20(sup2): 1700-1741, 2017.
3) Belščak-Cvitanović A, Durgo K, Huđek A, Bačun-Družina V, Komes D. Overview of polyphenols and their properties. In Polyphenols: Properties, recovery, and applications Woodhead Publishing, pp: 3-44, 2018.
4) Charlton A J, Baxter N J, Khan M L, Moir A J, Haslam E, Davies A P, Williamson M P. Polyphenol/peptide binding and precipitation. Journal of agricultural and food chemistry; 50(6): 1593-1601, .2002
5) Abbas M, Saeed F, Anjum F M, Afzaal M, Tufail T, Bashir M S, & et al. Natural polyphenols: An overview. International Journal of Food Properties; 20(8): 1689-1699, 2017.
6) Iglesias-Carres L, Mas-Capdevila A, Bravo F I, Aragonès G, Arola-Arnal, Muguerza B. A comparative study on the bioavailability of phenolic compounds from organic and nonorganic red grapes. Food Chemistry; 299, Article 125092, .2019
7) Cunha W R, Silva M L A, Veneziani R C S, Ambrósio S R, Bastos J K. Lignans: Chemical and biological properties. Phytochemicals-A global perspective of their role in nutrition and health; 2012.
8) Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability 1, 2. Am J Clin Nutr; 79(5): 727-47, .2004
9) Quideau S, Deffieux D, Douat Casassus C, Pouységu L. Plant polyphenols: chemical properties, biological activities, and synthesis. Angewandte Chemie International Edition; 50(3): 586-621, .2011
10) Haslam E, Cai Y. Plant polyphenols (vegetable tannins): gallic acid metabolism. Natural product reports; 11: 41-66, .1994
11) Ho C-T, Lee CY, Huang M-T. Phenolic compounds in food and their effects on health, I: analysis, occurrence, and chemistry. ACS Symposium Series 506. Washington, DC: American Chemical Society; 1992.
12) Zhang L, Han Z, Granato D. Polyphenols in foods: Classification, methods of identification, and nutritional aspects in human health. Advances in Food and Nutrition Research; 98: 1-33, .2021
13) Singla R K, Dubey A K, Garg A, Sharma R K, Fiorino M, Ameen S M, & et al. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. Journal of AOAC International ; 102(5): 1397-1400, 2019.
14) Mattila P, Kumpulainen J. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agric. Food Chem; 50(13): 3660-3667, 2002.
15) Ali G, Neda G. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of medicinal plants research; 5(31): 6697-6703, 2011.
16) Huang W Y, Cai Y Z, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr. cancer; 62(1): 1-20, 2009.
17) Park J B. Flaxseed secoisolariciresinol diglucoside and visceral obesity, A closer look at its chemical properties, absorption, metabolism, bioavailability, and effects on visceral fat, lipid profile, systemic inflammation, and hypertension. Nutrition in the Prevention and Treatment of Abdominal Obesity Book, 1st ed.; Watson, RR, Ed, pp: 317-328, 2014.
18) Farha A K, Yang Q Q, Kim G, Li H B, Zhu F, Liu H Y, & et al. Tannins as an alternative to antibiotics. Food Bioscience; 38: 100751, 2020.
19) Barbehenn R V, Constabel C P. Tannins in plant–herbivore interactions. Phytochemistry; 72(13): 1551-1565, 2011.
20) Islam F, Khadija J F, Islam R, Shohag S, Mitra S, Alghamdi S, & et al. Investigating Polyphenol Nanoformulations for Therapeutic Targets against Diabetes Mellitus. Evid.-based Complement. Altern. Med; 2022.
21) Sharma R. Polyphenols in health and disease: Practice and mechanisms of benefits. In Polyphenols in human health and disease, (pp. 757-778). Academic Press, 2014.
22) Cosme P, Rodríguez A B, Espino J, Garrido M. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants; 9(12): 1263, 2020.
23) Niu L, Li Z, Fan W, Zhong X, Peng M, Liu Z. Nano-Strategies for Enhancing the Bioavailability of Tea Polyphenols: Preparation, Applications, and Challenges. Foods; 11(3): 387, 2022.
24) Zhang X, Parekh G, Guo B, Huang X, Dong Y, Han W, & et al . Polyphenol and self-assembly: metal polyphenol nanonetwork for drug delivery and pharmaceutical applications. Future Drug Discovery; 1(1): FDD7, 2019.
25) Conte R, Calarco A, Napoletano A, Valentino A, Margarucci S, Di Cristo F, & et al. Polyphenols nanoencapsulation for therapeutic applications. J. Biomol. Res. Ther; 5(2), 2016.
26) Zare M, Norouzi Sarkati M, Tashakkorian H, Partovi R, Rahaiee S. Dextran-immobilized curcumin: An efficient agent against food pathogens and cancer cells. Journal of Bioactive and Compatible Polymers; 34(4-5), 309-320, 2019.
27) Guo Y, Sun Q, Wu F G, Dai Y, Chen X. Polyphenol‐Containing Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. Advanced Materials; 33(22): 2007356, 2021.
28) Rambaran T F. Nanopolyphenols: A review of their encapsulation and anti-diabetic effects. SN Applied Sciences; 2(8): 1-26, 2020.
29) Farhoudi M, Shadman B, Chavoshi R, Seyyedsani N, Aghaei E, Taheri E, & et al. Enhanced Anticancer Potency of Hydroxytyrosol and Curcumin by PLGA-PAA Nano-Encapsulation on PANC-1 Pancreatic Cancer Cell Line. Environ Toxicol; 36(6):1043-1051, 2021.
30) Chen L, Cao H, Xiao J. Polyphenols: Absorption, bioavailability, and metabolomics. In Polyphenols: properties, recovery, and applications. Woodhead Publishing, pp: 45-67, 2018.
31) Milinčić D D, Popović D A, Lević S M, Kostić A Ž, Tešić Ž L, Nedović V A, Pešić M B. Application of polyphenol-loaded nanoparticles in food industry. Nanomaterials; 9(11): 1629, 2019.
32) Ezhilarasi P N, Karthik P, Chhanwal N, Anandharamakrishnan C. Nanoencapsulation techniques for food bioactive components: a review. Food Bioproc. Tech; 6(3): 628-647, 2013.
33) Barras A, Mezzetti A, Richard A, Lazzaroni S, Roux S, Melnyk P, & et al. Formulation and characterization of polyphenol-loaded lipid nanocapsules. International journal of pharmaceutics; 379(2): 270-277, 2009.
34) Zare M, Sarkati M N, Tashakkorian H, Rahaiee S. Quercetin immobilization onto Chitosan-Functionalized Fe3O4 magnetic nanoparticles: Biocompatible nanomedicine for overcoming cancer cells. Journal of Cluster Science; 33(2): 449-455, 2022.
35) Ranjan S, Dasgupta N, Chakraborty A R, Melvin Samuel S, Ramalingam C, Shanker R, Kumar A. Nanoscience and nanotechnologies in food industries: Opportunities and research trends. J. Nanopart. Res;16:2464. doi: 10.1007/s11051-014-2464-5, 2014.
36) Silva H D, Cerqueira M Â, Vicente A A. Erratum to: Nanoemulsions for Food Applications: Development and Characterization. Food Bioprocess Technol; 7:306. doi: 10.1007/s11947-013-1094-8, 2014.
37) Homayouni H, Kavoosi G, Nassiri S M. Physicochemical, antioxidant and antibacterial properties of dispersion made from tapioca and gelatinized tapioca starch incorporated with carvacrol. LWT Food Sci. Technol; 77: 503–509, 2017.
38) Milinčić D D, Popović D A, Lević S M, Kostić A Ž, Tešić Ž L, Nedović V A, Pešić M B. Application of polyphenol-loaded nanoparticles in food industry. Nanomaterials; 9(11): 1629, 2019.
39) Ge X, Cao Z, Chu L. The Antioxidant Effect of the Metal and Metal-Oxide Nanoparticles. Antioxidants; 11(4): 791, 2022.
40) Wu D, Zhou J, Creyer M N, Yim W, Chen Z, Messersmith P B, Jokerst J V. Phenolic-enabled nanotechnology: Versatile particle engineering for biomedicine. Chemical Society Reviews; 50(7): 4432-4483, 2021.
41) Domínguez E, Moliné M P, Churio M S, Arce V B, Mártire D O, Mendiara S N, & et al. Bioactivity of gallic acid–conjugated silica nanoparticles against Paenibacillus larvae and their host, Apis mellifera honeybee. Apidologie; 50(5): 616-631, 2019.
42) Sulaiman G M, Waheeb H M, Jabir M S, Khazaal S H, Dewir Y H, Naidoo Y.Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Scientific reports; 10(1): 1-16, 2020.
43) Basu A, Kundu S, Das A, Basu C, Bhayye S, Das S, Mukherjee A.Polyphenol capping on a gold nanosurface modulates human serum albumin fibrillation. Materials Advances; 1(5):1142-1150, 2020.
44) Zare M, Sarkati M N. Chitosan functionalized Fe3O4 nanoparticles as an excellent biocompatible nanocarrier for silymarin delivery. Polymers for Advanced Technologies; 32(10): 4094-4100, 2021.
45) Zare M, Norouzi Roshan Z, Assadpour E, Jafari S M. Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems. Critical Reviews in Food Science and Nutrition; 61(3): 522-534, 2021.
46) 46) Li H, Zhang N, Hao Y, Wang Y, Jia S, Zhang H, Zhang Y, Zhang Z. Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: characteristics and anticancer effects in vitro. Drug delivery; 21(5): 379-87, 2014.
47) Liu M, Chang Y, Yang J, You Y, He R, Chen T, Zhou C. Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy. Journal of Materials Chemistry B.;4(13):2253-63, 2016.
48) Zare M, Sarkati M N, Rahaiee S. Fabrication of Nanoparticles based on Hesperidin-Loaded Chitosan-Functionalized Fe3O4: Evaluation of In vitro Antioxidant and Anticancer Properties. Macromolecular Research; 29(11): 785-790, 2021.