[1] L. N.- Nature and undefined 2015, “Gene therapy returns to centre stage,” nature.com.
[2] F. Ferrua and A. Aiuti, “Twenty-Five Years of Gene Therapy for ADA-SCID: From Bubble Babies to an Approved Drug,” Hum. Gene Ther., vol. 28, no. 11, pp. 972–981, Nov. 2017.
[3] T. Gonzalo, M. I. Clemente, L. Chonco, N. D. Weber, L. Díaz, M. J. Serramía, R. Gras, P. Ortega, F. J. de la Mata, R. Gómez, L. A. Lopez-Fernández, M. Á. Muñoz-Fernández, and J. L. Jiménez, “Gene Therapy in HIV-Infected Cells to Decrease Viral Impact by Using an Alternative Delivery Method,” ChemMedChem, vol. 5, no. 6, pp. 921–929, Jun. 2010.
[4] S. Rosenberg, N. R.- Science, and undefined 2015, “Adoptive cell transfer as personalized immunotherapy for human cancer,” science.sciencemag.org.
[5] M. V. Maus, J. A. Fraietta, B. L. Levine, M. Kalos, Y. Zhao, and C. H. June, “Adoptive Immunotherapy for Cancer or Viruses,” Annu. Rev. Immunol., vol. 32, no. 1, pp. 189–225, Mar. 2014.
[6] M. Al-Dosari and X. Gao, “Nonviral gene delivery: principle, limitations, and recent progress,” AAPS J., 2009.
[7] R. Waehler, S. Russell, and D. Curiel, “Engineering targeted viral vectors for gene therapy,” Nat. Rev. Genet., 2007.
[8] J. van der Loo, J. W.-H. molecular genetics, and undefined 2015, “Progress and challenges in viral vector manufacturing,” academic.oup.com.
[9] M. A. Kotterman, T. W. Chalberg, and D. V. Schaffer, “Viral Vectors for Gene Therapy: Translational and Clinical Outlook,” Annu. Rev. Biomed. Eng., vol. 17, no. 1, pp. 63–89, Dec. 2015.
[10] M. Mintzer and E. Simanek, “Nonviral vectors for gene delivery,” Chem. Rev., 2008.
[11] D. Jere, H. Jiang, R. Arote, Y. Kim, Y. Choi, M. Cho, T. Akaike, and C. Cho, “Degradable polyethylenimines as DNA and small interfering RNA carriers,” Expert Opin. Drug Deliv., vol. 6, no. 8, pp. 827–834, Aug. 2009.
[12] A. Das, P. Gupta, D. C.-A. Reviews, and undefined 2015, “Physical methods of gene transfer: Kinetics of gene delivery into cells: A Review.,” arccjournals.com.
[13] J. Singh, I. Mohanty, S. R.-A. J. of, and undefined 2017, “In vivo magnetofection: a novel approach for targeted topical delivery of nucleic acids for rectoanal motility disorders,” Am Physiol. Soc.
[14] M. Kazemi-Ashtiyani, B. Hajipour-Verdom, M. Satari, P. Abdolmaleki, S. Hosseinkhani, and H. Shaki, “Estimating the two graph dextran–stearic acid–spermine polymers based on iron oxide nanoparticles as carrier for gene delivery,” Biopolymers, vol. 113, no. 7, Jul. 2022.
[15] F. Krötz, H.-Y. Sohn, T. Gloe, C. Plank, and U. Pohl, “Magnetofection potentiates gene delivery to cultured endothelial cells,” J. Vasc. Res., vol. 40, no. 5, pp. 425–434, 2003.
[16] X. Pan, J. Guan, J.-W. Yoo, A. J. Epstein, L. J. Lee, and R. J. Lee, “Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery,” Int. J. Pharm., vol. 358, no. 1, pp. 263–270, 2008.
[17] C. Plank and J. Rosenecker, “Magnetofection: the use of magnetic nanoparticles for nucleic acid delivery,” Cold Spring Harb. Protoc., vol. 2009, no. 6, p. pdb–prot5230, 2009.
[18] C. C. Berry and A. S. G. Curtis, “Functionalisation of magnetic nanoparticles for applications in biomedicine,” J. Phys. D. Appl. Phys., vol. 36, no. 13, pp. R198–R206, Jul. 2003.
[19] S. Prijic, G. S.-R. and oncology, and undefined 2011, “Magnetic nanoparticles as targeted delivery systems in oncology,” degruyter.com.
[20]- Ross CL, Siriwardane M, Almeida-Porada G, Porada CD, Brink P, Christ GJ, et al. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res. 2015;15(1):96–108.
[21] F. Ashoori, B. Hajipour-Verdom, M. Satari, and P. Abdolmaleki, “Polyethylenimine-based iron oxide nanoparticles enhance cisplatin toxicity in ovarian cancer cells in the presence of a static magnetic field,” Front. Oncol., vol. 13, 2023.
[22] M. Satari, N. Haghighat, F. Javani Jouni, and P. Abodolmaleki, “The effects of synthesized superparamagnetic Iron Oxide nanoparticles and electromagnetic field on cell death of MCF-7 breast cancer cell line,” Multidiscip. Cancer Investig., vol. 2, no. 1, pp. 13–21, 2018.
[23] J. Zafari et al., “Anticancer Effects of Moderate Static Magnetic Field on Cancer Cells In Vitro,” Res. Mol. Med., vol. 6, no. 3, pp. 54–64, 2019.
[24] S. Kamalipooya, A. Sabet, F. J. Jouni, M. Satari, P. Abdolmaleki, and H. Soleimani, “Effect of Co-Treatment with Static Magnetic Fieldand Cis-diamminedichloroplatinum(II) on Apoptosis and Cell Cycle Progression in HeLa Cell Line and Hu02,” Cytol. Genet., vol. 55, no. 2, pp. 162–170, 2021.
[25] M. Satari, F. J. Jouni, P. Abolmaleki, and H. Soleimani, “Influence of static magnetic field on HeLa and Huo2 cells in the presence of Aloe vera extract,” Asian Pacific J. Cancer Prev., vol. 21, 2020.
[26] J. Zafari, F. J. Jouni, … P. A.-M. J. of, and undefined 2018, “Toxicity of Cisplatin under the Influence of Static Magnetic Field in Susceptible and Drug-Resistant Cells,” udd.modares.ac.irJ Zafari, F Javani Jouni, P Abdolmaleki, MJ Khodayar, A JalaliModares J. Biotechnol. 2018•udd.modares.ac.ir.
[27] N. Haghighat, P. Abdolmaleki, M. Behmanesh, and M. Satari, “Stable morphological–physiological and neural protein expression changes in rat bone marrow mesenchymal stem cells treated with electromagnetic field and nitric oxide,” Bioelectromagnetics, vol. 38, no. 8, 2017.
[28] F. Javani Jouni, J. Zafari, P. Abdolmaleki, H. Vazini, L. Ghandi, and M. Satari, “Aflatoxin M1 detoxification from infected milk using Fe3O4 nanoparticles attached to specific aptamer,” J. Nanostructure Chem., vol. 8, no. 1, pp. 13–22, Apr. 2018.
[29] S. Huth, J. Lausier, S. W. Gersting, C. Rudolph, C. Plank, U. Welsch, and J. Rosenecker, “Insights into the mechanism of magnetofection using PEI‐based magnetofectins for gene transfer,” J. Gene Med., vol. 6, no. 8, pp. 923–936, 2004.
[30] C. Dahmani, O. Mykhaylyk, F. Helling, T. Weyh, H.-G. Herzog, and C. Plank, “Rotational magnetic pulses enhance the magnetofection efficiency in vitro in adherent and suspension cells,” J. Magn. Magn. Mater., vol. 332, pp. 163–171, 2013.
[31] S. W. K. Chapman, P. O. Hassa, S. Koch-Schneidemann, B. von Rechenberg, M. Hofmann-Amtenbrink, B. Steitz, A. Petri-Fink, H. Hofmann, and M. O. Hottiger, “Application of pulsed-magnetic field enhances non-viral gene delivery in primary cells from different origins,” J. Magn. Magn. Mater., vol. 320, no. 8, pp. 1517–1527, 2008.
[32] S. Kamau, P. Hassa, … B. S.-N. A., and undefined 2006, “Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field,” academic.oup.com.
[33] Jun, Y.-w., Seo, J.-w., Cheon, J., "Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences". Acc. Chem. Res. 2008, 41, 179-189.
[34] J. Estelrich, E. Escribano, … J. Q.-I. journal of, and undefined 2015, “Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery,” mdpi.com.
[35] S. McBain, H. Yiu, and J. Dobson, “Magnetic nanoparticles for gene and drug delivery,” Int. J., 2008.
[36] C. Wiethoff and C. Middaugh, “Barriers to nonviral gene delivery,” J. Pharm., 2003.
[37] A. El-Sayed, S. Futaki, and H. Harashima, “Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment,” AAPS J., 2009.
[38] S. Moffatt, R. C.-I. J. of Pharmaceutics, and undefined 2006, “Uptake characteristics of NGR-coupled stealth PEI/pDNA nanoparticles loaded with PLGA-PEG-PLGA tri-block copolymer for targeted delivery to human,” Elsevier.
[39] X. Luo, F. Huang, S. Qin, H. Wang, J. Feng, and X. Zhang, “A strategy to improve serum-tolerant transfection activity of polycation vectors by surface hydroxylation,” Biomaterials, 2011.
[40] M. Ikonen, L. Murtomäki, and K. Kontturi, “Controlled complexation of plasmid DNA with cationic polymers: effect of surfactant on the complexation and stability of the complexes,” Colloids Surfaces B Biointerfaces, 2008.
[41] C. Hsu and H. Uludağ, “A simple and rapid nonviral approach to efficiently transfect primary tissue-derived cells using polyethylenimine,” Nat. Protoc., 2012.
[42] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, “IARC monographs on the evaluation of carcinogenic risks to humans. Ingested nitrate and nitrite, and cyanobacterial peptide toxins.,” IARC Monogr. Eval. Carcinog. Risks Hum., vol. 94, 2010.
[43] C. L. Ross, M. Siriwardane, G. Almeida-Porada, C. D. Porada, P. Brink, G. J. Christ, and B. S. Harrison, “The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation,” Stem Cell Res., vol. 15, no. 1, pp. 96–108, 2015.
[44] C. P. Ashdown et al., “Pulsed low-frequency magnetic fields induce tumor membrane disruption and altered cell viability,” cell.comCP Ashdown, SC Johns, E Amin. M Unanian, W Connacher, J Friend, MM FusterBiophysical journal, 2020•cell.com, vol. 118, pp. 1552–1563, 2020.
[45] B. Chen, W. Wu, and X. Wang, “Magnetic iron oxide nanoparticles for tumor-targeted therapy,” Curr. Cancer Drug Targets, 2011.
[46] N. Ben-Dov and R. Korenstein, “Proton-induced endocytosis is dependent on cell membrane fluidity, lipid-phase order and the membrane resting potential,” Biochim. Biophys. Acta (BBA)-, 2013.