مروری جامع بر نقش نانوفناوری در صنایع کشاورزی

نوع مقاله : مروری سیستماتیک

نویسندگان

گروه ریززیست فناوری، دانشکده علوم زیستی، دانشگاه تربیت مدرس، تهران، ایران

چکیده
تضمین امنیت غذایی در کشورهای در حال توسعه به دلیل بازده پایین بخش کشاورزی، تخریب منابع طبیعی، تلفات محصول، ارزش افزوده اندک و رشد بالای جمعیت بسیار چالش برانگیز است لذا محققان در تلاش هستند تا فناوری‌های جدیدتری را برای افزایش عرضه محصولات کشاورزی اتخاذ کنند. یکی از این فناوری‌ها، فناوری نانو است. نانو فناوری، علم تولید، ساخت و به‌کارگیری مواد در سطوح اتمی و مولکولی است و می‌تواند با کمک ابزارهای جدید صنایع مختلفی از جمله صنعت کشاورزی را دگرگون کند. نانوفناوری با به‌کارگیری موادجدید مانند نانوکودها، نانوعلف‌کش‌ها، نانوآفت‌کش‌ها و... سبب تقویت خاک و افزایش رشد گیاهان می‌شود و به کمک ابزارهای جدید مانند نانوحسگرها و سیستم‌های رسانش هوشمند، به موقع عوامل بیماری‌زا را در گیاهان شناسایی می‌کند. به همین دلایل نانوفناوری می‌تواند یک راه امیدوارکننده برای افزایش بهره‌وری محصولات در حوزه کشاورزی باشد.

کلیدواژه‌ها

موضوعات


[1] Elizabath, A., Babychan, M., Mathew, A. M., & Syriac, G. M. (2019). Application of nanotechnology in agriculture. Int. J. Pure Appl. Biosci, 7(2), 131-139.
[2] Singh, R., Dutt, S., Sharma, P., Sundramoorthy, A. K., Dubey, A., Singh, A., & Arya, S. (2023). Future of Nanotechnology in Food Industry: Challenges in Processing, Packaging, and Food Safety. Glob Chall, 7(4), 2200209. doi:10.1002/gch2.202200209
[3] Vijayakumar, MD., Surendhar, GJ., Natrayan, L., Patil, PP., Ram, PMB., Paramasivam, P. (2022). Evolution and Recent Scenario of Nanotechnology in Agriculture and Food Industries. Journal of Nanomaterials. 2022:1280411. https://doi.org/10.1155/2022/1280411
[4] Yadollahi, A., Arzani, K., Khoshghalb, H., (2010). The role of nanotechnology in horticultural crops postharvest management. In: Southeast Asia Symposium on Quality and Safety of Fresh and Fresh-Cut Produce, vol. 875, pp. 49 56
[5] Potocnik, J., 2005. Nanosciences and Nanotechnologies: an Action Plan for Europe 2005-2009. Commission of the European Communities, Brussels, pp. 1–16.
[6] Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., & Cummins, E. (2012). Nanotechnologies in the food industry – Recent developments, risks and regulation. Trends in Food Science & Technology, 24(1), 30-46. doi:https://doi.org/10.1016/j.tifs.2011.10.006
[7] Ashraf, S. A., Siddiqui, A. J., Elkhalifa, A. E. O., Khan, M. I., Patel, M., Alreshidi, M. & Adnan, M. (2021). Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Science of The Total Environment, 768, 144990. doi:https://doi.org/10.1016/j.scitotenv.2021.144990
[8] Sastry, R. K., Rashmi, H., & Rao, N. (2011). Nanotechnology for enhancing food security in India. Food Policy, 36(3), 391-400.
[9] Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R., & Kumar, A. (2015). Nanotechnology in agro-food: From field to plate. Food Research International, 69, 381-400. doi:https://doi.org/10.1016/j.foodres.2015.01.005
[10] Axelos, M. A., & Van de Voorde, M. (2017). Nanotechnology in agriculture and food science: John Wiley & Sons.
[11] Abobatta, W. F. (2018). Nanotechnology application in agriculture. Acta Scientific Agriculture, 2(6).
[12] Ravichandran, R. (2010). Nanotechnology Applications in Food and Food Processing: Innovative Green Approaches, Opportunities and Uncertainties for Global Market. International Journal of Green Nanotechnology: Physics and Chemistry, 1(2), P72-P96. doi:10.1080/19430871003684440
[13] Sadeghi, R., Rodriguez, R. J., Yao, Y., & Kokini, J. L. (2017). Advances in Nanotechnology as They Pertain to Food and Agriculture: Benefits and Risks. Annual Review of Food Science and Technology, 8(1), 467-492. doi:10.1146/annurev-food-041715-033338
[14] Prasad, R., Bhattacharyya, A., Nguyen, Q.D., (2017a). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front. Microbiol. 8,1014. doi: 10.3389/fmicb.2017.01014
[15] Husnain Gondal, A., & Tayyiba, L. (2022). Prospects of Using Nanotechnology in Agricultural Growth, Environment and Industrial Food Products. Reviews in Agricultural Science, 10, 68-81. doi:10.7831/ras.10.0_68
[16] Saini, N., & Ledwani, L. (2022). Potential Applications of Nanotechnology in Agriculture: Conceptions, Characteristics, Prospects, and Limitations-A Review. NanoWorld J, 8(S1), S147-S161.
[17] Guerra, F. D., Attia, M. F., Whitehead, D. C., & Alexis, F. (2018). Nanotechnology for Environmental Remediation: Materials and Applications. Molecules, 23(7), 1760. Retrieved from https://www.mdpi.com/1420-3049/23/7/1760
[18] Yunus, I. S., Harwin, n., Kurniawan, A., Adityawarman, D., & Indarto, A. (2012). Nanotechnologies in water and air pollution treatment. Environmental Technology Reviews, 1(1), 136-148. doi:10.1080/21622515.2012.733966
[19] Khin, M., Nair, S., Veluru, J. b., Murugan, R., & Ramakrishna, S. (2012). A review on nanomaterials for environmental remediation. Energy & Environmental Science, 5, 8075. doi:10.1039/c2ee21818f
[20] Mukhopadhyay, S. S. (2014). Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl, 7, 63-71. doi:10.2147/nsa.S39409
[21] He, X., Deng, H., & Hwang, H. (2019). The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 27(1), 1-21. doi:https://doi.org/10.1016/j.jfda.2018.12.002
[22] Neme, K., Nafady, A., Uddin, S., & Tola, Y. B. (2021). Application of nanotechnology in agriculture, ‎postharvest loss reduction and food processing: food security implication and challenges. Heliyon, ‎‎7(12), e08539. doi:https://doi.org/10.1016/j.heliyon.2021.e08539
[23] Misra, A. N., Misra, M., & Singh, R. (2013). Nanotechnology in Agriculture and Food Industry. International Journal of Pure and Applied Sciences and Technology, 16(2), 1-9.
[24 ] Al-Antary, TM., Kahlel, AMS., Ghidan, AY., & Asoufi HM. (2020). Effects of nanotechnology liquid fertilizers on fruit set and pods of broad bean (Vicia faba L.). Fresen. Environ. Bull. 29 (6): 4794–4798.
[25] Salem, N., Al-Banna, L., Abdeen, A., Ibrahim, Q., & Awwad, A. (2016). Sulfur Nanoparticles Improves Root and Shoot Growth of Tomato. Journal of Agricultural Science, 8, 179. doi:10.5539/jas.v8n4p179
[26] Zahedi, S. M., Karimi, M., & Teixeira da Silva, J. A. (2020). The use of nanotechnology to increase quality and yield of fruit crops. J Sci Food Agric, 100(1), 25-31. doi:10.1002/jsfa.10004
[27] Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of Nanotechnology in Plant Growth and Crop Protection: A Review. Molecules, 24(14). doi:10.3390/molecules24142558
[28] Jatav, H. S., Sharma, L., Sadhukhan, R., Singh, S. K., Singh, S., Rajput, V. D., & Sukirtee. (2020). An Overview of Micronutrients: Prospects and Implication in Crop Production. In Plant Micronutrients: Deficiency and Toxicity Management, pp. 1–30. doi:10.1007/978-3-030-49856-6_1
[29] Lal, R. (2020). Soil health and carbon management. Food Energy Secur., 5, 212–222. https://doi.org/10.1002/fes3.96
[30] Chung, H., Kim, M. J., Ko, K., Kim, J. H., Kwon, H. A., Hong, I., & Kim, W. (2015). Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci Total Environ, 514, 307-313. doi:10.1016/j.scitotenv.2015.01.077
[31] Rajput, V. D., Singh, A., Minkina, T., Rawat, S., Mandzhieva, S., Sushkova, S., & Upadhyay, S. K. (2021). Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture. Plants, 10(12), 2727. Retrieved from https://www.mdpi.com/2223-7747/10/12/2727
[32] Gondal, A., Zafar, A., Zainab, D., Toor, MD., Sohail, S., Ameen, S., & Younas, N. (2021). A detailed review study of zinc involvement in animal, plant and human nutrition. Indian J. of Pure Appl. Biosci. 9 (2): 262–271.
[33] Shah, V., Jones, J., Dickman, J., & Greenman, S. (2014). Response of soil bacterial community to metal nanoparticles in biosolids. J Hazard Mater, 274, 399-403. doi:10.1016/j.jhazmat.2014.04.003
[34] Bimová, P., Birosová, L., Vojs, M., Kromka, A., Gál, M., Tichý, J., Mackuľak, T. (2017). The influence of selected nanomaterials on microorganisms. Monatshefte für Chemie Chemical Monthly, 1-6. doi:10.1007/s00706-016-1911-7
[35] Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology ‎in Agriculture: Which Innovation Potential Does It Have? Frontiers in Environmental Science, 4. ‎doi:10.3389/fenvs.2016.00020
[36] Sivarethinamohan, R., & Sujatha, s. (2021). Unlocking the potentials of using nanotechnology to ‎stabilize agriculture and food production (Vol. 2327).‎
[37] Zhao, F., Xin, X., Cao, Y., Su, D., Ji, P., Zhu, Z., & He, Z. (2021). Use of Carbon Nanoparticles to Improve Soil Fertility, Crop Growth and Nutrient Uptake by Corn (Zea mays L.). Nanomaterials (Basel), 11(10). doi:10.3390/nano11102717
[38] Linh, T. M., Mai, N. C., Hoe, P. T., Lien, L. Q., Ban, N. K., Hien, L. T. T., & Van, N. T. (2020). Metal-Based Nanoparticles Enhance Drought Tolerance in Soybean. Journal of Nanomaterials, 2020, 4056563. doi:10.1155/2020/4056563
[39] Ali, B., Wang, X., Saleem, M. H., Sumaira, Hafeez, A., Afridi, M. S., & Ali, S. (2022). PGPR-Mediated Salt Tolerance in Maize by Modulating Plant Physiology, Antioxidant Defense, Compatible Solutes Accumulation and Bio-Surfactant Producing Genes. Plants, 11(3), 345. Retrieved from https://www.mdpi.com/2223-7747/11/3/345
[40] Upadhyay, S. K., & Chauhan, P. K. (2022). Optimization of eco-friendly amendments as sustainable asset for salt-tolerant plant growth-promoting bacteria mediated maize (Zea Mays L.) plant growth, Na uptake reduction and saline soil restoration. Environmental Research, 211, 113081. doi:https://doi.org/10.1016/j.envres.2022.113081
[41] Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., & Siddique, K. H. M. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem, 118, 199-217. doi:10.1016/j.plaphy.2017.06.020
[42] Gupta, S., Schillaci, M., Walker, R., Smith, P. M. C., Watt, M., & Roessner, U. (2021). Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant and Soil, 461(1), 219-244. doi:10.1007/s11104-020-04618-w
[43] Etesami, H., Fatemi, H., & Rizwan, M. (2021). Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicology and Environmental Safety, 225, 112769. doi:https://doi.org/10.1016/j.ecoenv.2021.112769
[44] Zulfiqar, F., & Ashraf, M. (2021). Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol Biochem, 160, 257-268. doi:10.1016/j.plaphy.2021.01.028
[45] Mahmoud, A. W. M., Abdeldaym, E. A., Abdelaziz, S. M., El-Sawy, M. B. I., & Mottaleb, S. A. (2020). Synergetic Effects of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Confer Tolerance in Potato Plants Subjected to Salinity. Agronomy, 10(1), 19. Retrieved from https://www.mdpi.com/2073-4395/10/1/19
[46] Manimaran, M. (2015). A review on nanotechnology and its implications in agriculture and food industry. Asian J Plant Sci Res 5:13–15
[47] Elizabath, A., Babychan, M., Merly Mathew, A., & Maria Syriac, G. (2019). Application of Nanotechnology in Agriculture. Int. J. Pure App. Biosci. 7 (2): 131-139. DOI: http://dx.doi.org/10.18782/2320-7051.6493
[48] Lopez-Lima, D., Mtz-Enriquez, A. I., Carrión, G., Basurto-Cereceda, S., & Pariona, N. (2021). The bifunctional role of copper nanoparticles in tomato: Effective treatment for Fusarium wilt and plant growth promoter. Scientia Horticulturae, 277, 109810.
[49] Iqbal, M., Raja, N. I., Mashwani, Z. U. R., Wattoo, F. H., Hussain, M., Ejaz, M., & Saira, H. (2019). Assessment of AgNPs exposure on physiological and biochemical changes and antioxidative defence system in wheat (Triticum aestivum L) under heat stress. IET nanobiotechnology, 13(2), 230-236.
[50] Siddiqui, Z. A., Khan, M. R., Abd_Allah, E. F., & Parveen, A. (2019). Titanium dioxide and zinc oxide nanoparticles affect some bacterial diseases, and growth and physiological changes of beetroot. International Journal of Vegetable Science, 25(5), 409-430.
[51] Cai, L., Liu, M., Liu, Z., Yang, H., Sun, X., Chen, J., & Ding, W. (2018). MgONPs can boost plant growth: evidence from increased seedling growth, morpho-physiological activities, and Mg uptake in tobacco (Nicotiana tabacum L.). Molecules, 23(12), 3375.
[52] Imada, K., Sakai, S., Kajihara, H., Tanaka, S., & Ito, S. (2016). Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology, 65(4), 551-560.
[53] Das, S., Mukherjee, A., Sengupta, G., & Singh, V. K. (2020). Overview of nanomaterials synthesis methods, characterization techniques and effect on seed germination. In Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants (pp. 371-401): Elsevier.
[54] Ali, S., Mehmood, A., & Khan, N. (2021). Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, 2021, 1-17.
[55] Prażak, R., Święciło, A., Krzepiłko, A., Michałek, S., & Arczewska, M. (2020). Impact of Ag nanoparticles on seed germination and seedling growth of green beans in normal and chill temperatures. Agriculture, 10(8), 312.
[56] Alshehddi, L. A. A., & Bokhari, N. (2020). Influence of gold and silver nanoparticles on the germination and growth of Mimusops laurifolia seeds in the South-Western regions in Saudi Arabia. Saudi journal of biological sciences, 27(1), 574-580.
[57] Gandhi, N., Shruthi, Y., Sirisha, G., & Anusha, C. (2021). Facile and eco-friendly method for synthesis of calcium oxide (CaO) nanoparticles and its potential application in agriculture. Saudi J. Life Sci, 6, 89-103.
[58] Pelegrino, M. T., Kohatsu, M. Y., Seabra, A. B., Monteiro, L. R., Gomes, D. G., Oliveira, H. C., &Lange, C. N. (2020). Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environmental Monitoring and Assessment, 192, 1-14.
[59] Yadav, S., Irfan, M., Ahmad, A., & Hayat, S. (2011). Causes of salinity and plant manifestations ‎to salt stress: a review. J Environ Biol, 32(5), 667-685. ‎
[60] Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., & Waris, A. A. (2019). Zinc and ‎iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and ‎cadmium concentration in wheat. Chemosphere, 214, 269-277. ‎doi:10.1016/j.chemosphere.2018.09.120‎
[61] Sarkar, M. M., Rudra, P., Paul, P., Dua, T. K., & Roy, S. (2024). Enhanced adaptation to salinity stress in lentil seedlings through the use of trehalose-functionalized silica nanoparticles (TSiNPs): Exploring silica-sugar absorption and oxidative balance. Plant Physiology and Biochemistry, 206, 108309.
[62] Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano-TiO 2 on strength of naturally aged seeds and growth of spinach. Biological trace element research, 104, 83-91.
[63] Cyriac, J., Melethil, K., Thomas, B., Sreejit, M., & Varghese, T. (2020). Synthesis of biogenic ZnO nanoparticles and its impact on seed germination and root growth of Oryza sativa L. and Vigna unguiculata L. Materials Today: Proceedings, 25, 224-229.
[64] Srivastav, A., Ganjewala, D., Singhal, R. K., Rajput, V. D., Minkina, T., Voloshina, M., ... & Shrivastava, M. (2021). Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants, 10(12), 2556.
[65] Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L., & Patil, B. S. (2020). Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific reports, 10(1), 5037
[66] Safdar, M., Kim, W., Park, S., Gwon, Y., Kim, Y. O., & Kim, J. (2022). Engineering plants with carbon nanotubes: a sustainable agriculture approach. Journal of Nanobiotechnology, 20(1), 1-30.
[67] Villagarcia, H., Dervishi, E., de Silva, K., Biris, A. S., & Khodakovskaya, M. V. (2012). Surface chemistry of ‎carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small, ‎‎8(15), 2328-2334. doi:10.1002/smll.201102661
[68] Wang, Q., Ma, X., Zhang, W., Pei, H., & Chen, Y. (2012). The impact of cerium oxide nanoparticles on tomato ‎‎(Solanum lycopersicum L.) and its implications for food safety. Metallomics, 4(10), 1105-1112. ‎doi:10.1039/c2mt20149f. doi: 10.1039/c2mt20149f
[69] Das, S. K., Das, A. R., & Guha, A. K. (2009). Gold nanoparticles: microbial synthesis and application in ‎water hygiene management. Langmuir, 25(14), 8192-8199. doi:10.1021/la900585p
[70] X., Li., Y, Yan., J, Chen., W, Shen., L. Li. (2019). Effect of TiO2 nanoparticles on the growth and photosynthetic efficiency of tomato seedlings under salt stress. Environ. Sci. Pollut. Res. 26 (15), pp. 15288-15297
[71] T.I, Sarhan., I.M, Al-Ashkar., G.N, Al-Karaki., A.M, Al-Quwaidhi. (2019). Silver nanoparticles improve growth and tolerance of wheat plants under salt stress. J. Plant Growth Regul. 38 (2), pp. 387-397
[72] M, Kumari., S, Pandey., M, Kumar., R.K, Gupta. (2020). Cerium oxide nanoparticles impair growth, physiological, and biochemical parameters in maize under salt stress. Environ. Sci. Pollut. Res., 27 (20), pp. 25762-25773
[73] Zahedi, S. M., Abolhassani, M., Hadian-Deljou, M., Feyzi, H., Akbari, A., Rasouli, F., ... & Gohari, G. (2023). Proline-functionalized graphene oxide nanoparticles (GO-pro NPs): A new engineered nanoparticle to ameliorate salinity stress on grape (Vitis vinifera l. cv sultana). Plant Stress, 7, 100128.
[74] W, Wang., Q, Zhou., Y, Zhang., S, Wei., S, Liu., H, Liu. (2021). Graphene oxide nanoparticles enhance tomato growth and water use efficiency under salt stress. J. Plant Growth Regul. 40 (3), pp. 1151-1161
[75] A, Rezazadeh., M, Ghorbanpour., P,R Moghaddam. (2021).Effects of silica nanoparticles on water retention, osmotic adjustment, and antioxidant activities of maize under salinity stress. J. Plant Nutr. 44 (1) , pp. 37-51
[76] S.Y. Salehi-Lisar, H Bakhshayeshan-Agdam. (2015). Effects of silicon nanoparticles on salinity tolerance of wheat seedling at early growth stage. Biol. Trace Elem. Res.166 (2) , pp. 222-229
[77] Junedi, M. A., Mukhopadhyay, R., & Manjari, K. S. (2023). Alleviating salinity stress in crop plants using new engineered nanoparticles (ENPs). Plant Stress, 9, 100184. doi:https://doi.org/10.1016/j.stress.2023.100184
[78] Banerjee, S., Bose, S., Banerjee, S., & Chakraborty, U. (2023). Nanoremediation. In F. Fernandez-Luqueno & J. K. Patra (Eds.), Agricultural and Environmental Nanotechnology: Novel Technologies and their Ecological Impact (pp. 413-432). Singapore: Springer Nature Singapore.
[79] Rani, M., Shanker, U., & Jassal, V. (2017). Recent strategies for removal and degradation of persistent ‎& toxic organochlorine pesticides using nanoparticles: A review. J Environ Manage, 190, 208-222. ‎doi:10.1016/j.jenvman.2016.12.068
[80] Ethaib, S., Al-Qutaifia, S., Al-Ansari, N., & Zubaidi, S. L. (2022). Function of Nanomaterials in ‎Removing Heavy Metals for Water and Wastewater Remediation: A Review. Environments, 9(10), ‎‎123. Retrieved from https://www.mdpi.com/2076-3298/9/10/123
[81] Ali, Q., Zia, M. A., Kamran, M., Shabaan, M., Zulfiqar, U., Ahmad, M., & Maqsood, M. F. (2023). Nanoremediation for heavy metal contamination: A review. Hybrid Advances, 4, 100091. doi:https://doi.org/10.1016/j.hybadv.2023.100091
[82] Bakshi, M., & Abhilash, P. C. (2020). Chapter 17 - Nanotechnology for soil remediation: Revitalizing the ‎tarnished resource. In P. Singh, A. Borthakur, P. K. Mishra, & D. Tiwary (Eds.), Nano-Materials as ‎Photocatalysts for Degradation of Environmental Pollutants (pp. 345-370): Elsevier
[83] Alabresm, A., Chen, Y. P., Decho, A. W., & Lead, J. (2018). A novel method for the synergistic remediation of oil-water mixtures using nanoparticles and oil-degrading bacteria. Science of The Total Environment, 630, 1292-1297. doi:https://doi.org/10.1016/j.scitotenv.2018.02.277
[84] Worrall, E., Hamid, A., Mody, K., Mitter, N., & Pappu, H. (2018). Nanotechnology for Plant Disease ‎Management. Agronomy, 8, 285. doi:10.3390/agronomy8120285
[85] Williamson, B., Tudzynski, B., Tudzynski, P., & van Kan, J. A. (2007). Botrytis cinerea: the cause of ‎grey mould disease. Mol Plant Pathol, 8(5), 561-580. doi:10.1111/j.1364-3703.2007.00417.x‎
[86] Zeng, X., Li, X., Xing, L., Liu, X., Luo, S., Wei, W., & Li, Y. (2009). Electrodeposition of chitosan-ionic ‎liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing. ‎Biosens Bioelectron, 24(9), 2898-2903. doi:10.1016/j.bios.2009.02.027‎
[87] Kim, JS., Kuk, E., Yu, KN., Kim, JH., Park, SJ., Lee, HJ., Kim, SH., Park, YK., Park, YH., Hwang, CY., Kim, YK., Lee, YS., Jeong, DH., Cho, MH. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101
[88] Zhang, W., Tang, H., Geng, P., Wang, Q., Jin, L., Wu, Z. (2007). Amperometric method for rapid detection of Escherichia coli by flow injection analysis using a bismuth nano-film modified glassy carbon electrode. Electrochem Commun 9:833–838
[89] Bottoms, M., & Emerson, SH. (2013). Chemistry, fertilizer, and the environment. California Foundation for Agriculture in the Classroom .pp 1–98.
[90] Preetha, P. S., & Balakrishnan, N. (2017). A review of nano fertilizers and their use and functions in soil. Int. J. Curr. Microbiol. Appl. Sci, 6(12), 3117-3133.
[91] Xiong, L., Wang, P., Hunter, M. N., & Kopittke, P. M. (2018). Bioavailability and movement of hydroxyapatite nanoparticles (HA-NPs) applied as a phosphorus fertiliser in soils. Environmental Science: Nano, 5(12), 2888-2898.
[92] Periakaruppan, R., Romanovski, V., Thirumalaisamy, S. K., Palanimuthu, V., Sampath, M. P., Anilkumar, A., & Selvaraj, K. S. V. (2023). Innovations in Modern Nanotechnology for the Sustainable Production of ‎Agriculture. ChemEngineering, 7(4), 61. Retrieved from https://www.mdpi.com/2305-7084/7/4/61‎
[93] Bhandari, G., Dhasmana, A., Chaudhary, P., Gupta, S., Gangola, S., Gupta, A., & Slama, P. (2023). A ‎Perspective Review on Green Nanotechnology in Agro-Ecosystems: Opportunities for Sustainable ‎Agricultural Practices & amp; Environmental Remediation. Agriculture, 13(3), 668. Retrieved from ‎https://www.mdpi.com/2077-0472/13/3/668
[94] Kim, D. Y., Kadam, A., Shinde, S., Saratale, R. G., Patra, J., & Ghodake, G. (2018). Recent developments in ‎nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food ‎Agric, 98(3), 849-864. doi:10.1002/jsfa.8749
[95] Shojaei, T., Salleh, A., Tabatabaei, M., Mobli, H., Aghbashlo, M., Abdul Rashid, S., & Tan, T. (2019). ‎Applications of Nanotechnology and Carbon Nanoparticles in Agriculture. In (pp. 247-277).‎
[96] Dong, J., Chen, W., Qin, D., Chen, Y., Li, J., Wang, C., & Du, X. (2021). Cyclodextrin polymer-valved MoS2-embedded mesoporous silica nanopesticides toward hierarchical targets via multidimensional stimuli of biological and natural environments. Journal of hazardous materials, 419, 126404.
[97] Okeke, E. S., Ezeorba, T. P. C., Mao, G., Chen, Y., Feng, W., & Wu, X. (2022). Nano-enabled agrochemicals/materials: Potential human health impact, risk assessment, management strategies and future prospects. Environmental Pollution, 295, 118722.
[98] Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., & Parihar, R. D. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1, 1-16.
[99] Wang, D., Saleh, N. B., Byro, A., Zepp, R., Sahle-Demessie, E., Luxton, T. P., & White, J. C. (2022). Nano-enabled pesticides for sustainable agriculture and global food security. Nature nanotechnology, 17(4), 347-360.
[100] Rojas, S., Rodríguez-Diéguez, A., & Horcajada, P. (2022). Metal–organic frameworks in agriculture. ACS Applied Materials & Interfaces, 14(15), 16983-17007.
[101] Liang, J., Yu, M., Guo, L., Cui, B., Zhao, X., Sun, C., & Zeng, Z. (2017). Bioinspired development of P (St–MAA)–avermectin nanoparticles with high affinity for foliage to enhance folia retention. Journal of Agricultural and Food Chemistry, 66(26), 6578-6584.
[102] Sarkar, M. R., Rashid, M. H.-o., Rahman, A., Kafi, M. A., Hosen, M. I., Rahman, M. S., & Khan, M. N. (2022). Recent advances in nanomaterials based sustainable agriculture: An overview. Environmental Nanotechnology, Monitoring & Management, 18, 100687.
[103] Ali, M., Rehman, I., Iqbal, A., Din, S., Qayyum Rao, A., Latif, A., & Husnain, T. (2014). Nanotechnology: A ‎new frontier in Agriculture. Advancement in Life Sciences, 1, 129-138.
[104] Xiang, Y., Zhang, G., Chi, Y., Cai, D., & Wu, Z. (2017). Fabrication of a controllable nanopesticide system with magnetic collectability. Chemical Engineering Journal, 328, 320-330.
[105] Peixoto, S., Henriques, I., & Loureiro, S. (2021). Long-term effects of Cu (OH) 2 nanopesticide exposure on soil microbial communities. Environmental Pollution, 269, 116113.
[106] Elrahman SHA, Mostafa MAM (2015) Applications of nanotechnology in agriculture: an overview. Egyptian J Soil Sci 55:197–214
[107] Sharma, B., Lakra, U., Sharma, R., & Sharma, S. R. (2022). A comprehensive review on nanopesticides and nanofertilizers—A boon for agriculture. Nano-enabled Agrochemicals in Agriculture, 273-290.
[108] Zhang, Q., Ying, Y., & Ping, J. (2022). Recent advances in plant nanoscience. Advanced Science, 9(2), 2103414.
[109] Cumplido-Nájera, C. F., González-Morales, S., Ortega-Ortíz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia Horticulturae, 245, 82-89.
[110] Ragaei M, Sabry AH. (2014). Nanotechnology for insect pest control. Int J Sci Environ Tech 3:528–545. doi: 10.4236/ae.2018.64020
[111] Bruno, P., Patrícia Luísa de Souza, B., Maria Fátima das Graças Fernandes da, S., João Batista, ‎F., & Moacir Rossi, F. (2013). Polymeric Nanoparticle-Based Insecticides: A Controlled ‎Release Purpose for Agrochemicals. In T. Stanislav (Ed.), Insecticides (pp. Ch. 20). ‎Rijeka: IntechOpen
[112] Khooshe-Bast, Z., Sahebzadeh, N., Ghaffari-Moghaddam, M., & Mirshekar, A. (2016). Insecticidal effects of ‎zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, ‎‎1856) (Hemiptera: Aleyrodidae). Acta agriculturae Slovenica, 107, 299. ‎doi:10.14720/aas.2016.107.2.04
[113] Sahayaraj, K., Madasamy, M., & Radhika, s. (2016). Insecticidal activity of bio-silver and gold nanoparticles ‎against Pericallia ricini Fab. (Lepidaptera: Archidae). Journal of Biopesticides, 9, 63-72. ‎doi:10.57182/jbiopestic.9.1.63-72‎
[114] Chand Mali, S., Raj, S., & Trivedi, R. (2020). Nanotechnology a novel approach to enhance crop ‎productivity. Biochemistry and Biophysics Reports, 24, 100821. ‎doi:https://doi.org/10.1016/j.bbrep.2020.100821
[115] Abd-Elsalam, K., & Alghuthaymi, M. (2015). Nanobiofungicides: are they the Next-Generation ‎of Fungicides? Journal of Nanotechnology and Materials Science, 2, 1-3. ‎doi:10.15436/2377-1372.15.013‎
[116] Pham, D. C., Nguyen, T. H., Ngoc, U. T. P., Le, N. T. T., Tran, T. V., & Nguyen, D. H. ‎‎(2018). Preparation, Characterization and Antifungal Properties of Chitosan-Silver ‎Nanoparticles Synergize Fungicide Against Pyricularia oryzae. J Nanosci Nanotechnol, ‎‎18(8), 5299-5305. doi:10.1166/jnn.2018.15400‎
[117] Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., & Lee, Y. S. (2012). Antifungal ‎Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. ‎Mycobiology, 40(1), 53-58. doi:10.5941/myco.2012.40.1.053
[118] Zacco, E., Pividori, M. I., Alegret, S., Galve, R., & Marco, M. P. (2006). Electrochemical ‎magnetoimmunosensing strategy for the detection of pesticides residues. Anal Chem, 78(6), 1780-‎‎1788. doi:10.1021/ac0512610
[119] Phan, Q. A., Truong, L. B., Medina-Cruz, D., Dincer, C., & Mostafavi, E. (2022). CRISPR/Cas-powered nanobiosensors for diagnostics. Biosensors and Bioelectronics, 197, 113732.
[120] Chen, K., Shen, Z., Wang, G., Gu, W., Zhao, S., Lin, Z., ... & Yan, T. (2022). Research progress of CRISPR-based biosensors and bioassays for molecular diagnosis. Frontiers in Bioengineering and Biotechnology, 10, 986233.
[121] Fu, R., Wang, Y., Liu, Y., Liu, H., Zhao, Q., Zhang, Y., ... & He, Y. (2022). CRISPR-Cas12a based fluorescence assay for organophosphorus pesticides in agricultural products. Food Chemistry, 387, 132919.
[122]حسینی، س.ف، کیوانی، ن. (1399). فناوری نانو و غذاهای فراسودمند، تحویل موثر ترکیبات زیست فعال، انتشارات دانشگاه تربیت مدرس.
[123]سلیمانپور، م، حسینی، س.ج.ف، میردامادی، س.م، سرافرازی، ع. شناسایی موانع تجاری‌سازی فناوری نانو در بخش کشاورزی. چهارمین کنگره علوم ترویج و آموزش کشاورزی و منابع طبیعی ایران.
[124] صفا، ل، حجازی، س.ی، حسینی، س.م، رضوانفر، ا. (1398). بررسی موانع تجاری‌سازی تولیدات حاصل از فناوری نانو در بخش کشاورزی ایران. مجله تحقیقات اقتصاد و توسعه کشاورزی ایران. دوره 2، شماره 4.‌