[1] Elizabath, A., Babychan, M., Mathew, A. M., & Syriac, G. M. (2019). Application of nanotechnology in agriculture. Int. J. Pure Appl. Biosci, 7(2), 131-139.
[2] Singh, R., Dutt, S., Sharma, P., Sundramoorthy, A. K., Dubey, A., Singh, A., & Arya, S. (2023). Future of Nanotechnology in Food Industry: Challenges in Processing, Packaging, and Food Safety. Glob Chall, 7(4), 2200209. doi:10.1002/gch2.202200209
[3] Vijayakumar, MD., Surendhar, GJ., Natrayan, L., Patil, PP., Ram, PMB., Paramasivam, P. (2022). Evolution and Recent Scenario of Nanotechnology in Agriculture and Food Industries. Journal of Nanomaterials. 2022:1280411. https://doi.org/10.1155/2022/1280411
[4] Yadollahi, A., Arzani, K., Khoshghalb, H., (2010). The role of nanotechnology in horticultural crops postharvest management. In: Southeast Asia Symposium on Quality and Safety of Fresh and Fresh-Cut Produce, vol. 875, pp. 49 56
[5] Potocnik, J., 2005. Nanosciences and Nanotechnologies: an Action Plan for Europe 2005-2009. Commission of the European Communities, Brussels, pp. 1–16.
[6] Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., & Cummins, E. (2012). Nanotechnologies in the food industry – Recent developments, risks and regulation. Trends in Food Science & Technology, 24(1), 30-46. doi:https://doi.org/10.1016/j.tifs.2011.10.006
[7] Ashraf, S. A., Siddiqui, A. J., Elkhalifa, A. E. O., Khan, M. I., Patel, M., Alreshidi, M. & Adnan, M. (2021). Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Science of The Total Environment, 768, 144990. doi:https://doi.org/10.1016/j.scitotenv.2021.144990
[8] Sastry, R. K., Rashmi, H., & Rao, N. (2011). Nanotechnology for enhancing food security in India. Food Policy, 36(3), 391-400.
[9] Dasgupta, N., Ranjan, S., Mundekkad, D., Ramalingam, C., Shanker, R., & Kumar, A. (2015). Nanotechnology in agro-food: From field to plate. Food Research International, 69, 381-400. doi:https://doi.org/10.1016/j.foodres.2015.01.005
[10] Axelos, M. A., & Van de Voorde, M. (2017). Nanotechnology in agriculture and food science: John Wiley & Sons.
[11] Abobatta, W. F. (2018). Nanotechnology application in agriculture. Acta Scientific Agriculture, 2(6).
[12] Ravichandran, R. (2010). Nanotechnology Applications in Food and Food Processing: Innovative Green Approaches, Opportunities and Uncertainties for Global Market. International Journal of Green Nanotechnology: Physics and Chemistry, 1(2), P72-P96. doi:10.1080/19430871003684440
[13] Sadeghi, R., Rodriguez, R. J., Yao, Y., & Kokini, J. L. (2017). Advances in Nanotechnology as They Pertain to Food and Agriculture: Benefits and Risks. Annual Review of Food Science and Technology, 8(1), 467-492. doi:10.1146/annurev-food-041715-033338
[14] Prasad, R., Bhattacharyya, A., Nguyen, Q.D., (2017a). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front. Microbiol. 8,1014. doi: 10.3389/fmicb.2017.01014
[15] Husnain Gondal, A., & Tayyiba, L. (2022). Prospects of Using Nanotechnology in Agricultural Growth, Environment and Industrial Food Products. Reviews in Agricultural Science, 10, 68-81. doi:10.7831/ras.10.0_68
[16] Saini, N., & Ledwani, L. (2022). Potential Applications of Nanotechnology in Agriculture: Conceptions, Characteristics, Prospects, and Limitations-A Review. NanoWorld J, 8(S1), S147-S161.
[17] Guerra, F. D., Attia, M. F., Whitehead, D. C., & Alexis, F. (2018). Nanotechnology for Environmental Remediation: Materials and Applications. Molecules, 23(7), 1760. Retrieved from https://www.mdpi.com/1420-3049/23/7/1760
[18] Yunus, I. S., Harwin, n., Kurniawan, A., Adityawarman, D., & Indarto, A. (2012). Nanotechnologies in water and air pollution treatment. Environmental Technology Reviews, 1(1), 136-148. doi:10.1080/21622515.2012.733966
[19] Khin, M., Nair, S., Veluru, J. b., Murugan, R., & Ramakrishna, S. (2012). A review on nanomaterials for environmental remediation. Energy & Environmental Science, 5, 8075. doi:10.1039/c2ee21818f
[20] Mukhopadhyay, S. S. (2014). Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl, 7, 63-71. doi:10.2147/nsa.S39409
[21] He, X., Deng, H., & Hwang, H. (2019). The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 27(1), 1-21. doi:https://doi.org/10.1016/j.jfda.2018.12.002
[22] Neme, K., Nafady, A., Uddin, S., & Tola, Y. B. (2021). Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon, 7(12), e08539. doi:https://doi.org/10.1016/j.heliyon.2021.e08539
[23] Misra, A. N., Misra, M., & Singh, R. (2013). Nanotechnology in Agriculture and Food Industry. International Journal of Pure and Applied Sciences and Technology, 16(2), 1-9.
[24 ] Al-Antary, TM., Kahlel, AMS., Ghidan, AY., & Asoufi HM. (2020). Effects of nanotechnology liquid fertilizers on fruit set and pods of broad bean (Vicia faba L.). Fresen. Environ. Bull. 29 (6): 4794–4798.
[25] Salem, N., Al-Banna, L., Abdeen, A., Ibrahim, Q., & Awwad, A. (2016). Sulfur Nanoparticles Improves Root and Shoot Growth of Tomato. Journal of Agricultural Science, 8, 179. doi:10.5539/jas.v8n4p179
[26] Zahedi, S. M., Karimi, M., & Teixeira da Silva, J. A. (2020). The use of nanotechnology to increase quality and yield of fruit crops. J Sci Food Agric, 100(1), 25-31. doi:10.1002/jsfa.10004
[27] Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of Nanotechnology in Plant Growth and Crop Protection: A Review. Molecules, 24(14). doi:10.3390/molecules24142558
[28] Jatav, H. S., Sharma, L., Sadhukhan, R., Singh, S. K., Singh, S., Rajput, V. D., & Sukirtee. (2020). An Overview of Micronutrients: Prospects and Implication in Crop Production. In Plant Micronutrients: Deficiency and Toxicity Management, pp. 1–30. doi:10.1007/978-3-030-49856-6_1
[29] Lal, R. (2020). Soil health and carbon management. Food Energy Secur., 5, 212–222. https://doi.org/10.1002/fes3.96
[30] Chung, H., Kim, M. J., Ko, K., Kim, J. H., Kwon, H. A., Hong, I., & Kim, W. (2015). Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci Total Environ, 514, 307-313. doi:10.1016/j.scitotenv.2015.01.077
[31] Rajput, V. D., Singh, A., Minkina, T., Rawat, S., Mandzhieva, S., Sushkova, S., & Upadhyay, S. K. (2021). Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture. Plants, 10(12), 2727. Retrieved from https://www.mdpi.com/2223-7747/10/12/2727
[32] Gondal, A., Zafar, A., Zainab, D., Toor, MD., Sohail, S., Ameen, S., & Younas, N. (2021). A detailed review study of zinc involvement in animal, plant and human nutrition. Indian J. of Pure Appl. Biosci. 9 (2): 262–271.
[33] Shah, V., Jones, J., Dickman, J., & Greenman, S. (2014). Response of soil bacterial community to metal nanoparticles in biosolids. J Hazard Mater, 274, 399-403. doi:10.1016/j.jhazmat.2014.04.003
[34] Bimová, P., Birosová, L., Vojs, M., Kromka, A., Gál, M., Tichý, J., Mackuľak, T. (2017). The influence of selected nanomaterials on microorganisms. Monatshefte für Chemie Chemical Monthly, 1-6. doi:10.1007/s00706-016-1911-7
[35] Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in Agriculture: Which Innovation Potential Does It Have? Frontiers in Environmental Science, 4. doi:10.3389/fenvs.2016.00020
[36] Sivarethinamohan, R., & Sujatha, s. (2021). Unlocking the potentials of using nanotechnology to stabilize agriculture and food production (Vol. 2327).
[37] Zhao, F., Xin, X., Cao, Y., Su, D., Ji, P., Zhu, Z., & He, Z. (2021). Use of Carbon Nanoparticles to Improve Soil Fertility, Crop Growth and Nutrient Uptake by Corn (Zea mays L.). Nanomaterials (Basel), 11(10). doi:10.3390/nano11102717
[38] Linh, T. M., Mai, N. C., Hoe, P. T., Lien, L. Q., Ban, N. K., Hien, L. T. T., & Van, N. T. (2020). Metal-Based Nanoparticles Enhance Drought Tolerance in Soybean. Journal of Nanomaterials, 2020, 4056563. doi:10.1155/2020/4056563
[39] Ali, B., Wang, X., Saleem, M. H., Sumaira, Hafeez, A., Afridi, M. S., & Ali, S. (2022). PGPR-Mediated Salt Tolerance in Maize by Modulating Plant Physiology, Antioxidant Defense, Compatible Solutes Accumulation and Bio-Surfactant Producing Genes. Plants, 11(3), 345. Retrieved from https://www.mdpi.com/2223-7747/11/3/345
[40] Upadhyay, S. K., & Chauhan, P. K. (2022). Optimization of eco-friendly amendments as sustainable asset for salt-tolerant plant growth-promoting bacteria mediated maize (Zea Mays L.) plant growth, Na uptake reduction and saline soil restoration. Environmental Research, 211, 113081. doi:https://doi.org/10.1016/j.envres.2022.113081
[41] Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., & Siddique, K. H. M. (2017). Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem, 118, 199-217. doi:10.1016/j.plaphy.2017.06.020
[42] Gupta, S., Schillaci, M., Walker, R., Smith, P. M. C., Watt, M., & Roessner, U. (2021). Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant and Soil, 461(1), 219-244. doi:10.1007/s11104-020-04618-w
[43] Etesami, H., Fatemi, H., & Rizwan, M. (2021). Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicology and Environmental Safety, 225, 112769. doi:https://doi.org/10.1016/j.ecoenv.2021.112769
[44] Zulfiqar, F., & Ashraf, M. (2021). Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol Biochem, 160, 257-268. doi:10.1016/j.plaphy.2021.01.028
[45] Mahmoud, A. W. M., Abdeldaym, E. A., Abdelaziz, S. M., El-Sawy, M. B. I., & Mottaleb, S. A. (2020). Synergetic Effects of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Confer Tolerance in Potato Plants Subjected to Salinity. Agronomy, 10(1), 19. Retrieved from https://www.mdpi.com/2073-4395/10/1/19
[46] Manimaran, M. (2015). A review on nanotechnology and its implications in agriculture and food industry. Asian J Plant Sci Res 5:13–15
[47] Elizabath, A., Babychan, M., Merly Mathew, A., & Maria Syriac, G. (2019). Application of Nanotechnology in Agriculture. Int. J. Pure App. Biosci. 7 (2): 131-139. DOI: http://dx.doi.org/10.18782/2320-7051.6493
[48] Lopez-Lima, D., Mtz-Enriquez, A. I., Carrión, G., Basurto-Cereceda, S., & Pariona, N. (2021). The bifunctional role of copper nanoparticles in tomato: Effective treatment for Fusarium wilt and plant growth promoter. Scientia Horticulturae, 277, 109810.
[49] Iqbal, M., Raja, N. I., Mashwani, Z. U. R., Wattoo, F. H., Hussain, M., Ejaz, M., & Saira, H. (2019). Assessment of AgNPs exposure on physiological and biochemical changes and antioxidative defence system in wheat (Triticum aestivum L) under heat stress. IET nanobiotechnology, 13(2), 230-236.
[50] Siddiqui, Z. A., Khan, M. R., Abd_Allah, E. F., & Parveen, A. (2019). Titanium dioxide and zinc oxide nanoparticles affect some bacterial diseases, and growth and physiological changes of beetroot. International Journal of Vegetable Science, 25(5), 409-430.
[51] Cai, L., Liu, M., Liu, Z., Yang, H., Sun, X., Chen, J., & Ding, W. (2018). MgONPs can boost plant growth: evidence from increased seedling growth, morpho-physiological activities, and Mg uptake in tobacco (Nicotiana tabacum L.). Molecules, 23(12), 3375.
[52] Imada, K., Sakai, S., Kajihara, H., Tanaka, S., & Ito, S. (2016). Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology, 65(4), 551-560.
[53] Das, S., Mukherjee, A., Sengupta, G., & Singh, V. K. (2020). Overview of nanomaterials synthesis methods, characterization techniques and effect on seed germination. In Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants (pp. 371-401): Elsevier.
[54] Ali, S., Mehmood, A., & Khan, N. (2021). Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, 2021, 1-17.
[55] Prażak, R., Święciło, A., Krzepiłko, A., Michałek, S., & Arczewska, M. (2020). Impact of Ag nanoparticles on seed germination and seedling growth of green beans in normal and chill temperatures. Agriculture, 10(8), 312.
[56] Alshehddi, L. A. A., & Bokhari, N. (2020). Influence of gold and silver nanoparticles on the germination and growth of Mimusops laurifolia seeds in the South-Western regions in Saudi Arabia. Saudi journal of biological sciences, 27(1), 574-580.
[57] Gandhi, N., Shruthi, Y., Sirisha, G., & Anusha, C. (2021). Facile and eco-friendly method for synthesis of calcium oxide (CaO) nanoparticles and its potential application in agriculture. Saudi J. Life Sci, 6, 89-103.
[58] Pelegrino, M. T., Kohatsu, M. Y., Seabra, A. B., Monteiro, L. R., Gomes, D. G., Oliveira, H. C., &Lange, C. N. (2020). Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense. Environmental Monitoring and Assessment, 192, 1-14.
[59] Yadav, S., Irfan, M., Ahmad, A., & Hayat, S. (2011). Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol, 32(5), 667-685.
[60] Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., & Waris, A. A. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, 269-277. doi:10.1016/j.chemosphere.2018.09.120
[61] Sarkar, M. M., Rudra, P., Paul, P., Dua, T. K., & Roy, S. (2024). Enhanced adaptation to salinity stress in lentil seedlings through the use of trehalose-functionalized silica nanoparticles (TSiNPs): Exploring silica-sugar absorption and oxidative balance. Plant Physiology and Biochemistry, 206, 108309.
[62] Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano-TiO 2 on strength of naturally aged seeds and growth of spinach. Biological trace element research, 104, 83-91.
[63] Cyriac, J., Melethil, K., Thomas, B., Sreejit, M., & Varghese, T. (2020). Synthesis of biogenic ZnO nanoparticles and its impact on seed germination and root growth of Oryza sativa L. and Vigna unguiculata L. Materials Today: Proceedings, 25, 224-229.
[64] Srivastav, A., Ganjewala, D., Singhal, R. K., Rajput, V. D., Minkina, T., Voloshina, M., ... & Shrivastava, M. (2021). Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants, 10(12), 2556.
[65] Acharya, P., Jayaprakasha, G. K., Crosby, K. M., Jifon, J. L., & Patil, B. S. (2020). Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Scientific reports, 10(1), 5037
[66] Safdar, M., Kim, W., Park, S., Gwon, Y., Kim, Y. O., & Kim, J. (2022). Engineering plants with carbon nanotubes: a sustainable agriculture approach. Journal of Nanobiotechnology, 20(1), 1-30.
[67] Villagarcia, H., Dervishi, E., de Silva, K., Biris, A. S., & Khodakovskaya, M. V. (2012). Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small, 8(15), 2328-2334. doi:10.1002/smll.201102661
[68] Wang, Q., Ma, X., Zhang, W., Pei, H., & Chen, Y. (2012). The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics, 4(10), 1105-1112. doi:10.1039/c2mt20149f. doi: 10.1039/c2mt20149f
[69] Das, S. K., Das, A. R., & Guha, A. K. (2009). Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir, 25(14), 8192-8199. doi:10.1021/la900585p
[70] X., Li., Y, Yan., J, Chen., W, Shen., L. Li. (2019). Effect of TiO2 nanoparticles on the growth and photosynthetic efficiency of tomato seedlings under salt stress. Environ. Sci. Pollut. Res. 26 (15), pp. 15288-15297
[71] T.I, Sarhan., I.M, Al-Ashkar., G.N, Al-Karaki., A.M, Al-Quwaidhi. (2019). Silver nanoparticles improve growth and tolerance of wheat plants under salt stress. J. Plant Growth Regul. 38 (2), pp. 387-397
[72] M, Kumari., S, Pandey., M, Kumar., R.K, Gupta. (2020). Cerium oxide nanoparticles impair growth, physiological, and biochemical parameters in maize under salt stress. Environ. Sci. Pollut. Res., 27 (20), pp. 25762-25773
[73] Zahedi, S. M., Abolhassani, M., Hadian-Deljou, M., Feyzi, H., Akbari, A., Rasouli, F., ... & Gohari, G. (2023). Proline-functionalized graphene oxide nanoparticles (GO-pro NPs): A new engineered nanoparticle to ameliorate salinity stress on grape (Vitis vinifera l. cv sultana). Plant Stress, 7, 100128.
[74] W, Wang., Q, Zhou., Y, Zhang., S, Wei., S, Liu., H, Liu. (2021). Graphene oxide nanoparticles enhance tomato growth and water use efficiency under salt stress. J. Plant Growth Regul. 40 (3), pp. 1151-1161
[75] A, Rezazadeh., M, Ghorbanpour., P,R Moghaddam. (2021).Effects of silica nanoparticles on water retention, osmotic adjustment, and antioxidant activities of maize under salinity stress. J. Plant Nutr. 44 (1) , pp. 37-51
[76] S.Y. Salehi-Lisar, H Bakhshayeshan-Agdam. (2015). Effects of silicon nanoparticles on salinity tolerance of wheat seedling at early growth stage. Biol. Trace Elem. Res.166 (2) , pp. 222-229
[77] Junedi, M. A., Mukhopadhyay, R., & Manjari, K. S. (2023). Alleviating salinity stress in crop plants using new engineered nanoparticles (ENPs). Plant Stress, 9, 100184. doi:https://doi.org/10.1016/j.stress.2023.100184
[78] Banerjee, S., Bose, S., Banerjee, S., & Chakraborty, U. (2023). Nanoremediation. In F. Fernandez-Luqueno & J. K. Patra (Eds.), Agricultural and Environmental Nanotechnology: Novel Technologies and their Ecological Impact (pp. 413-432). Singapore: Springer Nature Singapore.
[79] Rani, M., Shanker, U., & Jassal, V. (2017). Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: A review. J Environ Manage, 190, 208-222. doi:10.1016/j.jenvman.2016.12.068
[80] Ethaib, S., Al-Qutaifia, S., Al-Ansari, N., & Zubaidi, S. L. (2022). Function of Nanomaterials in Removing Heavy Metals for Water and Wastewater Remediation: A Review. Environments, 9(10), 123. Retrieved from https://www.mdpi.com/2076-3298/9/10/123
[81] Ali, Q., Zia, M. A., Kamran, M., Shabaan, M., Zulfiqar, U., Ahmad, M., & Maqsood, M. F. (2023). Nanoremediation for heavy metal contamination: A review. Hybrid Advances, 4, 100091. doi:https://doi.org/10.1016/j.hybadv.2023.100091
[82] Bakshi, M., & Abhilash, P. C. (2020). Chapter 17 - Nanotechnology for soil remediation: Revitalizing the tarnished resource. In P. Singh, A. Borthakur, P. K. Mishra, & D. Tiwary (Eds.), Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants (pp. 345-370): Elsevier
[83] Alabresm, A., Chen, Y. P., Decho, A. W., & Lead, J. (2018). A novel method for the synergistic remediation of oil-water mixtures using nanoparticles and oil-degrading bacteria. Science of The Total Environment, 630, 1292-1297. doi:https://doi.org/10.1016/j.scitotenv.2018.02.277
[84] Worrall, E., Hamid, A., Mody, K., Mitter, N., & Pappu, H. (2018). Nanotechnology for Plant Disease Management. Agronomy, 8, 285. doi:10.3390/agronomy8120285
[85] Williamson, B., Tudzynski, B., Tudzynski, P., & van Kan, J. A. (2007). Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol, 8(5), 561-580. doi:10.1111/j.1364-3703.2007.00417.x
[86] Zeng, X., Li, X., Xing, L., Liu, X., Luo, S., Wei, W., & Li, Y. (2009). Electrodeposition of chitosan-ionic liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing. Biosens Bioelectron, 24(9), 2898-2903. doi:10.1016/j.bios.2009.02.027
[87] Kim, JS., Kuk, E., Yu, KN., Kim, JH., Park, SJ., Lee, HJ., Kim, SH., Park, YK., Park, YH., Hwang, CY., Kim, YK., Lee, YS., Jeong, DH., Cho, MH. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101
[88] Zhang, W., Tang, H., Geng, P., Wang, Q., Jin, L., Wu, Z. (2007). Amperometric method for rapid detection of Escherichia coli by flow injection analysis using a bismuth nano-film modified glassy carbon electrode. Electrochem Commun 9:833–838
[89] Bottoms, M., & Emerson, SH. (2013). Chemistry, fertilizer, and the environment. California Foundation for Agriculture in the Classroom .pp 1–98.
[90] Preetha, P. S., & Balakrishnan, N. (2017). A review of nano fertilizers and their use and functions in soil. Int. J. Curr. Microbiol. Appl. Sci, 6(12), 3117-3133.
[91] Xiong, L., Wang, P., Hunter, M. N., & Kopittke, P. M. (2018). Bioavailability and movement of hydroxyapatite nanoparticles (HA-NPs) applied as a phosphorus fertiliser in soils. Environmental Science: Nano, 5(12), 2888-2898.
[92] Periakaruppan, R., Romanovski, V., Thirumalaisamy, S. K., Palanimuthu, V., Sampath, M. P., Anilkumar, A., & Selvaraj, K. S. V. (2023). Innovations in Modern Nanotechnology for the Sustainable Production of Agriculture. ChemEngineering, 7(4), 61. Retrieved from https://www.mdpi.com/2305-7084/7/4/61
[93] Bhandari, G., Dhasmana, A., Chaudhary, P., Gupta, S., Gangola, S., Gupta, A., & Slama, P. (2023). A Perspective Review on Green Nanotechnology in Agro-Ecosystems: Opportunities for Sustainable Agricultural Practices & amp; Environmental Remediation. Agriculture, 13(3), 668. Retrieved from https://www.mdpi.com/2077-0472/13/3/668
[94] Kim, D. Y., Kadam, A., Shinde, S., Saratale, R. G., Patra, J., & Ghodake, G. (2018). Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric, 98(3), 849-864. doi:10.1002/jsfa.8749
[95] Shojaei, T., Salleh, A., Tabatabaei, M., Mobli, H., Aghbashlo, M., Abdul Rashid, S., & Tan, T. (2019). Applications of Nanotechnology and Carbon Nanoparticles in Agriculture. In (pp. 247-277).
[96] Dong, J., Chen, W., Qin, D., Chen, Y., Li, J., Wang, C., & Du, X. (2021). Cyclodextrin polymer-valved MoS2-embedded mesoporous silica nanopesticides toward hierarchical targets via multidimensional stimuli of biological and natural environments. Journal of hazardous materials, 419, 126404.
[97] Okeke, E. S., Ezeorba, T. P. C., Mao, G., Chen, Y., Feng, W., & Wu, X. (2022). Nano-enabled agrochemicals/materials: Potential human health impact, risk assessment, management strategies and future prospects. Environmental Pollution, 295, 118722.
[98] Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., & Parihar, R. D. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1, 1-16.
[99] Wang, D., Saleh, N. B., Byro, A., Zepp, R., Sahle-Demessie, E., Luxton, T. P., & White, J. C. (2022). Nano-enabled pesticides for sustainable agriculture and global food security. Nature nanotechnology, 17(4), 347-360.
[100] Rojas, S., Rodríguez-Diéguez, A., & Horcajada, P. (2022). Metal–organic frameworks in agriculture. ACS Applied Materials & Interfaces, 14(15), 16983-17007.
[101] Liang, J., Yu, M., Guo, L., Cui, B., Zhao, X., Sun, C., & Zeng, Z. (2017). Bioinspired development of P (St–MAA)–avermectin nanoparticles with high affinity for foliage to enhance folia retention. Journal of Agricultural and Food Chemistry, 66(26), 6578-6584.
[102] Sarkar, M. R., Rashid, M. H.-o., Rahman, A., Kafi, M. A., Hosen, M. I., Rahman, M. S., & Khan, M. N. (2022). Recent advances in nanomaterials based sustainable agriculture: An overview. Environmental Nanotechnology, Monitoring & Management, 18, 100687.
[103] Ali, M., Rehman, I., Iqbal, A., Din, S., Qayyum Rao, A., Latif, A., & Husnain, T. (2014). Nanotechnology: A new frontier in Agriculture. Advancement in Life Sciences, 1, 129-138.
[104] Xiang, Y., Zhang, G., Chi, Y., Cai, D., & Wu, Z. (2017). Fabrication of a controllable nanopesticide system with magnetic collectability. Chemical Engineering Journal, 328, 320-330.
[105] Peixoto, S., Henriques, I., & Loureiro, S. (2021). Long-term effects of Cu (OH) 2 nanopesticide exposure on soil microbial communities. Environmental Pollution, 269, 116113.
[106] Elrahman SHA, Mostafa MAM (2015) Applications of nanotechnology in agriculture: an overview. Egyptian J Soil Sci 55:197–214
[107] Sharma, B., Lakra, U., Sharma, R., & Sharma, S. R. (2022). A comprehensive review on nanopesticides and nanofertilizers—A boon for agriculture. Nano-enabled Agrochemicals in Agriculture, 273-290.
[108] Zhang, Q., Ying, Y., & Ping, J. (2022). Recent advances in plant nanoscience. Advanced Science, 9(2), 2103414.
[109] Cumplido-Nájera, C. F., González-Morales, S., Ortega-Ortíz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Scientia Horticulturae, 245, 82-89.
[110] Ragaei M, Sabry AH. (2014). Nanotechnology for insect pest control. Int J Sci Environ Tech 3:528–545. doi: 10.4236/ae.2018.64020
[111] Bruno, P., Patrícia Luísa de Souza, B., Maria Fátima das Graças Fernandes da, S., João Batista, F., & Moacir Rossi, F. (2013). Polymeric Nanoparticle-Based Insecticides: A Controlled Release Purpose for Agrochemicals. In T. Stanislav (Ed.), Insecticides (pp. Ch. 20). Rijeka: IntechOpen
[112] Khooshe-Bast, Z., Sahebzadeh, N., Ghaffari-Moghaddam, M., & Mirshekar, A. (2016). Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta agriculturae Slovenica, 107, 299. doi:10.14720/aas.2016.107.2.04
[113] Sahayaraj, K., Madasamy, M., & Radhika, s. (2016). Insecticidal activity of bio-silver and gold nanoparticles against Pericallia ricini Fab. (Lepidaptera: Archidae). Journal of Biopesticides, 9, 63-72. doi:10.57182/jbiopestic.9.1.63-72
[114] Chand Mali, S., Raj, S., & Trivedi, R. (2020). Nanotechnology a novel approach to enhance crop productivity. Biochemistry and Biophysics Reports, 24, 100821. doi:https://doi.org/10.1016/j.bbrep.2020.100821
[115] Abd-Elsalam, K., & Alghuthaymi, M. (2015). Nanobiofungicides: are they the Next-Generation of Fungicides? Journal of Nanotechnology and Materials Science, 2, 1-3. doi:10.15436/2377-1372.15.013
[116] Pham, D. C., Nguyen, T. H., Ngoc, U. T. P., Le, N. T. T., Tran, T. V., & Nguyen, D. H. (2018). Preparation, Characterization and Antifungal Properties of Chitosan-Silver Nanoparticles Synergize Fungicide Against Pyricularia oryzae. J Nanosci Nanotechnol, 18(8), 5299-5305. doi:10.1166/jnn.2018.15400
[117] Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., & Lee, Y. S. (2012). Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology, 40(1), 53-58. doi:10.5941/myco.2012.40.1.053
[118] Zacco, E., Pividori, M. I., Alegret, S., Galve, R., & Marco, M. P. (2006). Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues. Anal Chem, 78(6), 1780-1788. doi:10.1021/ac0512610
[119] Phan, Q. A., Truong, L. B., Medina-Cruz, D., Dincer, C., & Mostafavi, E. (2022). CRISPR/Cas-powered nanobiosensors for diagnostics. Biosensors and Bioelectronics, 197, 113732.
[120] Chen, K., Shen, Z., Wang, G., Gu, W., Zhao, S., Lin, Z., ... & Yan, T. (2022). Research progress of CRISPR-based biosensors and bioassays for molecular diagnosis. Frontiers in Bioengineering and Biotechnology, 10, 986233.
[121] Fu, R., Wang, Y., Liu, Y., Liu, H., Zhao, Q., Zhang, Y., ... & He, Y. (2022). CRISPR-Cas12a based fluorescence assay for organophosphorus pesticides in agricultural products. Food Chemistry, 387, 132919.
[122]حسینی، س.ف، کیوانی، ن. (1399). فناوری نانو و غذاهای فراسودمند، تحویل موثر ترکیبات زیست فعال، انتشارات دانشگاه تربیت مدرس.
[123]سلیمانپور، م، حسینی، س.ج.ف، میردامادی، س.م، سرافرازی، ع. شناسایی موانع تجاریسازی فناوری نانو در بخش کشاورزی. چهارمین کنگره علوم ترویج و آموزش کشاورزی و منابع طبیعی ایران.
[124] صفا، ل، حجازی، س.ی، حسینی، س.م، رضوانفر، ا. (1398). بررسی موانع تجاریسازی تولیدات حاصل از فناوری نانو در بخش کشاورزی ایران. مجله تحقیقات اقتصاد و توسعه کشاورزی ایران. دوره 2، شماره 4.