1- Sun, W., Liu, Z., Xu, J., Cheng, Y., Yin, R., Ma, L., ... & Zhang, H. (2023). 3D skin models along with skin-on-a-chip systems: A critical review. Chinese Chemical Letters, 34(5), 107819.
2- Rogers, A. P., Mileto, S. J., & Lyras, D. (2023). Impact of enteric bacterial infections at and beyond the epithelial barrier. Nature Reviews Microbiology, 21(4), 260-274.
3- Zhang, S., Liu, H., Li, W., Liu, X., Ma, L., Zhao, T., ... & Liu, W. (2023). Polysaccharide-based hydrogel promotes skin wound repair and research progress on its repair mechanism. International Journal of Biological Macromolecules, 125949.
4- Popescu, V., Cauni, V., Petrutescu, M. S., Rustin, M. M., Bocai, R., Turculet, C. R., ... & Mastalier, B. (2023). Chronic Wound Management: From Gauze to Homologous Cellular Matrix. Biomedicines, 11(9), 2457.
5- Yang, Y., Li, M., Pan, G., Chen, J., & Guo, B. (2023). Multiple Stimuli‐Responsive Nanozyme‐Based Cryogels with Controlled NO Release as Self‐Adaptive Wound Dressing for Infected Wound Healing. Advanced Functional Materials, 2214089.
6- Pita-Vilar, M., Concheiro, A., Alvarez-Lorenzo, C., & Diaz-Gomez, L. (2023). Recent advances in 3D printed cellulose-based wound dressings: A review on in vitro and in vivo achievements. Carbohydrate Polymers, 121298.
7- Nguyen, H. M., Le, T. T. N., Nguyen, A. T., Le, H. N. T., & Pham, T. T. (2023). Biomedical materials for wound dressing: Recent advances and applications. RSC advances, 13(8), 5509-5528.
8- Solanki, D., Vinchhi, P., & Patel, M. M. (2023). Design Considerations, Formulation Approaches, and Strategic Advances of Hydrogel Dressings for Chronic Wound Management. ACS omega, 8(9), 8172-8189.
9- Jose, J., Khot, K. B., Thomas, S. P., Chopra, H., Gopan, G., Bandiwadekar, A., ... & Vora, V. (2023). Advances in microneedles-based drug delivery system on promoting wound healing. Journal of Drug Delivery Science and Technology, 105163.
10- Tan, Y., Yang, Q., Zheng, M., Sarwar, M. T., & Yang, H. (2023). Multifunctional Nanoclay‐Based Hemostatic Materials for Wound Healing: A Review. Advanced Healthcare Materials, 2302700.
11- Jayakumar, A., Mathew, S., Radoor, S., Kim, J. T., Rhim, J. W., & Siengchin, S. (2023). Recent advances in two-dimensional nanomaterials: properties, antimicrobial, and drug delivery application of nanocomposites. Materials Today Chemistry, 30, 101492.
12- Uchida, D. T., & Bruschi, M. L. (2023). 3D Printing as a Technological Strategy for the Personalized Treatment of Wound Healing. AAPS PharmSciTech, 24(1), 41.
13- Zboinska, M. A., Sämfors, S., & Gatenholm, P. (2023). Robotically 3D printed architectural membranes from ambient dried cellulose nanofibril-alginate hydrogel. Materials & Design, 112472.
14- Saraiva, M. M., Campelo, M. D. S., Camara Neto, J. F., Lima, A. B. N., Silva, G. D. A., Dias, A. T. D. F. F., ... & Ribeiro, M. E. N. P. (2023). Alginate/polyvinyl alcohol films for wound healing: Advantages and challenges. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 111(1), 220-233.
15- Zhou, B., Jiang, X., Zhou, X., Tan, W., Luo, H., Lei, S., & Yang, Y. (2023). GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomaterials Research, 27(1), 86.
16- Almajidi, Y. Q., Gupta, J., Sheri, F. S., Zabibah, R. S., Faisal, A., Ruzibayev, A., ... & Farhood, B. (2023). Advances in chitosan-based hydrogels for pharmaceutical and biomedical applications: A comprehensive review. International Journal of Biological Macromolecules, 127278.
17- Reizabal, A., Costa, C. M., Pérez-Álvarez, L., Vilas-Vilela, J. L., & Lanceros-Méndez, S. (2023). The New Silk Road: Silk Fibroin Blends and Composites for Next Generation Functional and Multifunctional Materials Design. Polymer Reviews, 1-64.
18- Wuran, W., Aihemaitijiang, X., Zhu, T., & He, H. Application of silk fibroin composite scaffold in bone tissue engineering.
19- Sun, X., Zhang, Y., Cui, J., Zhang, C., Xing, C., Bian, H., ... & Su, L. (2023). Advanced multilayer composite dressing with co-delivery of gelsevirine and silk fibroin for burn wound healing. Composites Part B: Engineering, 253, 110549.
20- Liu, Y., Zhang, Z., Zhang, Y., Luo, B., Liu, X., Cao, Y., & Pei, R. (2023). Construction of adhesive and bioactive silk fibroin hydrogel for treatment of spinal cord injury. Acta Biomaterialia, 158, 178-189.
21- Tiwari, N., Kumar, D., Priyadarshani, A., Jain, G. K., Mittal, G., Kesharwani, P., & Aggarwal, G. (2023). Recent progress in polymeric biomaterials and their potential applications in skin regeneration and wound care management. Journal of Drug Delivery Science and Technology, 104319.
22- Mikhailidi, A., Ungureanu, E., Belosinschi, D., Tofanica, B. M., & Volf, I. (2023). Cellulose-Based Metallogels—Part 3: Multifunctional Materials. Gels, 9(11), 878.
23- Mohammadi, S., Jabbari, F., & Babaeipour, V. (2023). Bacterial cellulose-based composites as vehicles for dermal and transdermal drug delivery: A review. International Journal of Biological Macromolecules, 124955.
24- Raut, M. P., Asare, E., Syed Mohamed, S. M. D., Amadi, E. N., & Roy, I. (2023). Bacterial cellulose-based blends and composites: Versatile biomaterials for tissue engineering applications. International Journal of Molecular Sciences, 24(2), 986.
25- Jongprasitkul, H. (2023). Tailoring the Printability of Photocrosslinkable Polypeptide and Polysaccharide-based Bioinks for Extrusion-based 3D Bioprinting.
26- Wu, Y., Fang, J., Wu, C., Li, C., Sun, G., & Li, Q. (2023). Additively manufactured materials and structures: A state-of-the-art review on their mechanical characteristics and energy absorption. International Journal of Mechanical Sciences, 108102.
27- Elgarahy, A. M., Eloffy, M. G., Guibal, E., Alghamdi, H. M., & Elwakeel, K. Z. (2023). Use of biopolymers in wastewater treatment: A brief review of current trends and prospects. Chinese Journal of Chemical Engineering.
28- Du, H., Chen, Z., Gong, X., Jiang, M., Chen, G., & Wang, F. (2023). Surface grafting of sericin onto thermoplastic polyurethanes to improve cell adhesion and function. Journal of Biomaterials Science, Polymer Edition, 1-16.
29- Zhao, L., Zhou, Y., Zhang, J., Liang, H., Chen, X., & Tan, H. (2023). Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics, 15(10), 2514.
30- Rahimkhoei, V., Padervand, M., Hedayat, M., Seidi, F., Dawi, E. A., & Akbari, A. (2023). Biomedical applications of electrospun polycaprolactone-based carbohydrate polymers: A review. International Journal of Biological Macromolecules, 126642.
31- Emadi, H., Karevan, M., Masoudi Rad, M., Sadeghzade, S., Pahlevanzadeh, F., Khodaei, M., ... & Lotfian, S. (2023). Bioactive and biodegradable polycaprolactone-based nanocomposite for bone repair applications. Polymers, 15(17), 3617.
32- Vach Agocsova, S., Culenova, M., Birova, I., Omanikova, L., Moncmanova, B., Danisovic, L., ... & Alexy, P. (2023). Resorbable Biomaterials Used for 3D Scaffolds in Tissue Engineering: A Review. Materials, 16(12), 4267.
33- Budharaju, H., Suresh, S., Sekar, M. P., De Vega, B., Sethuraman, S., Sundaramurthi, D., & Kalaskar, D. M. (2023). Ceramic Materials for 3D Printing of Biomimetic Bone Scaffolds–Current state–of–the–art & Future Perspectives. Materials & Design, 112064.
34- Li, N., Khan, S. B., Chen, S., Aiyiti, W., Zhou, J., & Lu, B. (2023). Promising New Horizons in Medicine: Medical Advancements with Nanocomposite Manufacturing via 3D Printing. Polymers, 15(20), 4122.
35- Zeng, J., Xiong, S., Zhou, J., Wei, P., Guo, K., Wang, F., ... & Wu, D. (2023). Hollow hydroxyapatite microspheres loaded with rhCXCL13 to recruit BMSC for osteogenesis and synergetic angiogenesis to promote bone regeneration in bone defects. International Journal of Nanomedicine, 3509-3534.
36- Wang, L., Qu, Y., Li, W., Wang, K., & Qin, S. (2023). Effects and metabolism of fish collagen sponge in repairing acute wounds of rat skin. Frontiers in Bioengineering and Biotechnology, 11, 1087139.
37- Popal, Z., Nickel, K. F., Wöltje, M., Aibibu, D., Knipfer, C., Smeets, R., & Renné, T. (2023). Polyphosphate-loaded silk fibroin membrane as hemostatic agent in oral surgery: a pilot study. International Journal of Implant Dentistry, 9(1), 1-8.
38- Xu, H., Sanchez-Salvador, J. L., Blanco, A., Balea, A., & Negro, C. (2023). Recycling of TEMPO-mediated oxidation medium and its effect on nanocellulose properties. Carbohydrate Polymers, 319, 121168.
39- Wang, K., Ma, Q., Zhou, H. T., Zhao, J. M., Cao, M., & Wang, S. D. (2023). Review on Fabrication and Application of Regenerated Bombyx Mori Silk Fibroin Materials. Autex Research Journal, 23(2), 164-183.
40- Yang, C., Yao, L., & Zhang, L. (2023). Silk sericin-based biomaterials shine in food and pharmaceutical industries. Smart Materials in Medicine.
41- Lin, Y., Ou, Y., Xu, M., & Chen, J. (2023). Enhancing bone regeneration with bionic hydrolysis and biomimetic polydopamine coating on 3D-printed PCL scaffolds: A comparative study. Materials Today Communications, 37, 107262.
42- Eivazzadeh-Keihan, R., Farrokhi-Hajiabad, F., Aliabadi, H. A. M., Ziabari, E. Z., Geshani, S., Kashtiaray, A., ... & Mahdavi, M. (2023). A novel magnetic nanocomposite based on alginate-tannic acid hydrogel embedded with silk fibroin with biological activity and hyperthermia application. International Journal of Biological Macromolecules, 224, 1478-1486.
43- Park, J., Kim, T. Y., Kim, Y., An, S., Kim, K. S., Kang, M., ... & Seo, J. (2023). A Mechanically Resilient and Tissue‐Conformable Hydrogel with Hemostatic and Antibacterial Capabilities for Wound Care. Advanced Science, 10(30), 2303651.
44- Wong, S. H. D., Deen, G. R., Bates, J. S., Maiti, C., Lam, C. Y. K., Pachauri, A., ... & Dodda, J. M. (2023). Smart Skin‐Adhesive Patches: From Design to Biomedical Applications. Advanced Functional Materials, 33(14), 2213560.
45- Rodrigues, T. Z. L., Flor, J. C. D., Palermo, L. C., & Mansur, C. R. Evaluation of the polymer hydrogels as a potential relative permeability modifier. Journal of Applied Polymer Science, e54879.
46- An, Y., He, F., Ye, Q., Fan, S., Zeng, Y., Tang, M., ... & Li, K. (2023). Identification of CpbZIP11 in Cyclocarya paliurus Involved in Environmental Stress Responses. Forests, 14(10), 2104.
47- Balachandran, A., Choi, S. B., Beata, M. M., Małgorzata, J., Froemming, G. R., Lavilla Jr, C. A., ... & Okechukwu, P. N. (2023). Antioxidant, Wound Healing Potential and In Silico Assessment of Naringin, Eicosane and Octacosane. Molecules, 28(3), 1043.
48- Karimi, T., Mottaghitalab, F., Keshvari, H., & Farokhi, M. (2023). Carboxymethyl chitosan/sodium carboxymethyl cellulose/agarose hydrogel dressings containing silk fibroin/polydopamine nanoparticles for antibiotic delivery. Journal of Drug Delivery Science and Technology, 80, 104134.
49- Mamudu, U., Dufresne, A., & Lim, R. C. (2023). Synthesis and characterization of phosphorylated cellulose nanocrystals for enhanced UV stability of epoxy nanocomposite films. Composites Part C: Open Access, 12, 100393.
50- Divakaran, D., Suyambulingam, I., Sanjay, M. R., Raghunathan, V., Ayyappan, V., & Siengchin, S. (2023). Isolation and characterization of microcrystalline cellulose from an agro-waste tamarind (Tamarindus indica) seeds and its suitability investigation for biofilm formulation. International Journal of Biological Macromolecules, 127687.
51- Elakkiya, K., Bargavi, P., & Balakumar, S. (2023). Unveiling pro-angiogenesis and drug delivery using dual-bio polymer with bio-ceramic based nanocomposite hydrogels. Chemosphere, 341, 140131.
52- Liu, H., Chen, H., Han, Q., Bin, S., Liu, Y., Zhang, A., ... & Wang, J. (2023). Recent advancement in vascularized tissue-engineered bone based on materials design and modification. Materials Today Bio, 100858.
53- Khan, M. U. A., Aslam, M. A., Abdullah, M. F. B., Hasan, A., Shah, S. A., & Stojanović, G. M. (2023). Recent perspective of polymeric biomaterial in tissue engineering–a review. Materials Today Chemistry, 34, 101818.
54- Krstić M., Ibrić S. , Self-nanoemulsifying drug delivery systems (SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs. Lipid Nanocarriers for Drug Targeting, 2018. p. 473-508.
55- Dhania, S., Rani, R., Kumar, R., & Thakur, R. (2023). Fabricated polyhydroxyalkanoates blend scaffolds enhance cell viability and cell proliferation. Journal of Biotechnology, 361, 30-40.
56- Behm, D. G., Alizadeh, S., Daneshjoo, A., & Konrad, A. (2023). Potential Effects of Dynamic Stretching on Injury Incidence of Athletes: A Narrative Review of Risk Factors. Sports Medicine, 1-15.
57- Zhang, K., Wang, H., Huang, C., Su, Y., Mo, X., & Ikada, Y. (2010). Fabrication of silk fibroin blended P (LLA‐CL) nanofibrous scaffolds for tissue engineering. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 93(3), 984-993.
58- Thomas, B., Raj, M. C., Joy, J., Moores, A., Drisko, G. L., & Sanchez, C. (2018). Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chemical reviews, 118(24), 11575-11625.
59- Tommasino, C., Auriemma, G., Sardo, C., Alvarez-Lorenzo, C., Garofalo, E., Morello, S., ... & Aquino, R. P. (2023). 3D printed macroporous scaffolds of PCL and inulin-gP (D, L) LA for bone tissue engineering applications. International Journal of Pharmaceutics, 123093.
60- Bartolo, P., Domingos, M., Gloria, A., & Ciurana, J. (2011). BioCell Printing: Integrated automated assembly system for tissue engineering constructs. CIRP annals, 60(1), 271-274.
61- Resetco, C., Hendriks, B., Badi, N., & Du Prez, F. (2017). Thiol–ene chemistry for polymer coatings and surface modification–building in sustainability and performance. Materials Horizons, 4(6), 1041-1053.
62- Yang, K. Y., Wloch, D., & Lee, K. Y. (2021). TEMPO-oxidised nanocellulose hydrogels and self-standing films derived from bacterial cellulose nanopaper. RSC advances, 11(45), 28352-28360.
63- Arnsten, A. F. (2015). Stress weakens prefrontal networks: molecular insults to higher cognition. Nature neuroscience, 18(10), 1376-1385.
64- Shefa, A. A., Taz, M., Lee, S. Y., & Lee, B. T. (2019). Enhancement of hemostatic property of plant derived oxidized nanocellulose-silk fibroin based scaffolds by thrombin loading. Carbohydrate polymers, 208, 168-179.
65- Guo, Y., Bae, J., Fang, Z., Li, P., Zhao, F., & Yu, G. (2020). Hydrogels and hydrogel-derived materials for energy and water sustainability. Chemical Reviews, 120(15), 7642-7707.
66- Lee, K. Y., Rowley, J. A., Eiselt, P., Moy, E. M., Bouhadir, K. H., & Mooney, D. J. (2000). Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules, 33(11), 4291-4294.
67- Liang, L., Bhagia, S., Li, M., Huang, C., & Ragauskas, A. J. (2020). Cross‐linked nanocellulosic materials and their applications. ChemSusChem, 13(1), 78-87.
68- Depan, D., Shah, J. S., & Misra, R. D. K. (2013). Degradation mechanism and increased stability of chitosan-based hybrid scaffolds cross-linked with nanostructured carbon: Process–structure–functional property relationship. Polymer degradation and Stability, 98(11), 2331-2339.
69- Smith, R. C., Leung, A., Kim, B. S., & Hammond, P. T. (2009). Hydrophobic effects in the critical destabilization and release dynamics of degradable multilayer films. Chemistry of Materials, 21(6), 1108-1115.
70- Bartnikowski, M., Dargaville, T. R., Ivanovski, S., & Hutmacher, D. W. (2019). Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science, 96, 1-20.
71- Spicer, C. D. (2020). Hydrogel scaffolds for tissue engineering: The importance of polymer choice. Polymer Chemistry, 11(2), 184-219.
72- Dai, R., Meng, L., Fu, Q., Hao, S., & Yang, J. (2021). Fabrication of anisotropic silk fibroin-cellulose nanocrystals cryogels with tunable mechanical properties, rapid swelling, and structural recoverability via a directional-freezing strategy. ACS Sustainable Chemistry & Engineering, 9(36), 12274-12285.
73- Sapudom, J., Kongsema, M., Methachittipan, A., Damrongsakkul, S., Kanokpanont, S., Teo, J. C., ... & Thongnuek, P. (2023). Degradation products of crosslinked silk fibroin scaffolds modulate the immune response but not cell toxicity. Journal of Materials Chemistry B, 11(16), 3607-3616.
74- Tajvar, S., Hadjizadeh, A., & Samandari, S. S. (2023). Scaffold degradation in bone tissue engineering: An overview. International Biodeterioration & Biodegradation, 180, 105599.
75- Mariggiò, M. A., Cassano, A., Vinella, A., Vincenti, A., Fumarulo, R., Muzio, L. L., ... & Favia, G. (2009). Enhancement of fibroblast proliferation, collagen biosynthesis and production of growth factors as a result of combining sodium hyaluronate and aminoacids. International Journal of immunopathology and Pharmacology, 22(2), 485-492.
76- Dalton, C. J., & Lemmon, C. A. (2021). Fibronectin: Molecular structure, fibrillar structure and mechanochemical signaling. Cells, 10(9), 2443.
77- Ye, Z. H., Ning, K., Ander, B. P., & Sun, X. J. (2020). Therapeutic effect of methane and its mechanism in disease treatment. Journal of Zhejiang University. Science. B, 21(8), 593.
78- Masle, J. (2000). The effects of elevated CO2 concentrations on cell division rates, growth patterns, and blade anatomy in young wheat plants are modulated by factors related to leaf position, vernalization, and genotype. Plant Physiology, 122(4), 1399-1416.
79- Zarei, M., Sayedain, S. S., Askarinya, A., Sabbaghi, M., & Alizadeh, R. (2023). Improving physio-mechanical and biological properties of 3D-printed PLA scaffolds via in-situ argon cold plasma treatment. Scientific Reports, 13(1), 14120.
80- Barmshuri, M., Kholdebarin, B., & Sadeghi, S. (2023). Applications of comet and MTT assays in studying Dunaliella algae species. Algal Research, 70, 103018.
81- Madappura, A. P., & Madduri, S. (2023). A comprehensive review of silk-fibroin hydrogels for cell and drug delivery applications in tissue engineering and regenerative medicine. Computational and Structural Biotechnology Journal.
82- Singh, S., Yadav, S. K., Meena, V. K., Vashisth, P., & Kalyanasundaram, D. (2023). Orthopedic Scaffolds: Evaluation of Structural Strength and Permeability of Fluid Flow via an Open Cell Neovius Structure for Bone Tissue Engineering. ACS Biomaterials Science & Engineering, 9(10), 5900-5911.
83- Hasanzadeh, R., Mihankhah, P., Azdast, T., Rasouli, A., Shamkhali, M., & Park, C. B. (2023). Biocompatible tissue-engineered scaffold polymers for 3D printing and its application for 4D printing. Chemical Engineering Journal, 146616.
84- Attiogbe, E., Larochelle, S., Chaib, Y., Mainzer, C., Mauroux, A., Bordes, S., ... & Moulin, V. J. (2023). An in vitro autologous, vascularized, and immunocompetent Tissue Engineered Skin model obtained by the self-assembled approach. Acta Biomaterialia, 168, 361-371.
85- Nayak, P., Bentivoglio, V., Varani, M., & Signore, A. (2023). Three-Dimensional In Vitro Tumor Spheroid Models for Evaluation of Anticancer Therapy: Recent Updates. Cancers, 15(19), 4846.
86- Marijuán, P. C., del Moral, R., & Navarro, J. (2013). On eukaryotic intelligence: signaling system's guidance in the evolution of multicellular organization. Biosystems, 114(1), 8-24.
87- Karbowniczek, J. E., Berniak, K., Knapczyk-Korczak, J., Williams, G., Bryant, J. A., Nikoi, N. D., ... & Stachewicz, U. (2023). Strategies of nanoparticles integration in polymer fibers to achieve antibacterial effect and enhance cell proliferation with collagen production in tissue engineering scaffolds. Journal of Colloid and Interface Science, 650, 1371-1381.
88- Bacakova, L., Pajorova, J., Bacakova, M., Skogberg, A., Kallio, P., Kolarova, K., & Svorcik, V. (2019). Versatile application of nanocellulose: From industry to skin tissue engineering and wound healing. Nanomaterials, 9(2), 164.
89- Chutipakdeevong, J., Ruktanonchai, U. R., & Supaphol, P. (2013). Process optimization of electrospun silk fibroin fiber mat for accelerated wound healing. Journal of Applied Polymer Science, 130(5), 3634-3644.
90- Radstake, W. E., Gautam, K., Van Rompay, C., Vermeesen, R., Tabury, K., Verslegers, M., ... & Baselet, B. (2023). Comparison of in vitro scratch wound assay experimental procedures. Biochemistry and Biophysics Reports, 33, 101423.
91- Venugopal, J. R., Zhang, Y., & Ramakrishna, S. (2006). In vitro culture of human dermal fibroblasts on electrospun polycaprolactone collagen nanofibrous membrane. Artificial organs, 30(6), 440-446.
92- Sergi, R., Cannillo, V., Boccaccini, A. R., & Liverani, L. (2020). Incorporation of bioactive glasses containing Mg, Sr, and Zn in electrospun PCL fibers by using benign solvents. Applied Sciences, 10(16), 5530.
93- Martinez-Mora, C., Mrowiec, A., García-Vizcaíno, E. M., Alcaraz, A., Cenis, J. L., & Nicolás, F. J. (2012). Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun.
94- Oppenheimer, S. B. (1978). Cell surface carbohydrates in adhesion and migration. American Zoologist, 18(1), 13-23.
95- Evans, N. D., Oreffo, R. O., Healy, E., Thurner, P. J., & Man, Y. H. (2013). Epithelial mechanobiology, skin wound healing, and the stem cell niche. Journal of the mechanical behavior of biomedical materials, 28, 397-409.