سنتز زیستی نانوکامپوزیت های نقره/نقره کلرید بر پایه ی سویه‌های باکتریایی Bacillus haynesii sp. PN14F و sp. B3 Bacillus halotolerans و بررسی خواص کاتالیزگری و ضدباکتریایی آن ها

نوع مقاله : پژوهشی اصیل

نویسندگان

دانشگاه کاشان

چکیده
تحقیق حاضر با هدف توسعه­ یک رویکرد ساده و سبز برای تولید نانوکامپوزیت نقره/نقره­ کلرید با استفاده از دو سویه باکتریایی Bacillus haynesii sp. PN14F و Bacillus halotolerans sp. B3 به روش خارج سلولی انجام شده است. سویه‌های PN14F و B3 از نمونه­ های خاک و پساب با روش رقیق سازی و کشت مستقیم جداسازی و مورد استفاده قرار گرفت. نانوکامپوزیت­های نقره/نقره­ کلرید از واکنش محلول نیترات نقره (I) و سوپرناتانت باکتریایی در شرایط کاملاً استریل در حضور نور سنتز شدند. علاوه بر این آزمایش­های کنترل شده برای بهینه­ سازی برخی شرایط واکنش ازجمله غلظت سوبسترا، pH، حجم سوبسترا، حجم سوپرناتانت باکتریایی، حضور گلوکز به­عنوان الکترون دهنده و غلظت محلول نیترات نقره (I) به­عنوان القاکننده انجام گردید. نتایج نشان داد شرایط بهینه برای نانوکامپوزیت‌هایAg1 و Ag2، 75/4 میلی لیترسوپرناتانت، 25/0 میلی لیتر از نیترات نقره (I) یک میلی‌مولار و حضور الکترون دهنده و القاکننده است: با این تفاوت که نانوکامپوزیت­‌های Ag1در pH 7 و Ag2 در pH 8 بهترین بازده را دارند. محصولات با استفاده از روش­های UV-Vis، XRD،FT-IR ، FE-SEM و EDX مورد شناسایی قرار گرفتند. نانوکامپوزیت­های زیستی حاصل (Ag1 و Ag2) با اندازه­ ذرات 30 و 3/22 نانومتر، به­ عنوان کاتالیزگرهای ناهمگن کارآمد برای کاهش ترکیب سمی پارانیتروفنول به ترکیب غیرسمی پاراآمینوفنول مورد استفاده قرار گرفتند. همچنین نانوکامپوزیت­ها فعالیت ضدمیکروبی علیه باکتری­های گرم مثبت و گرم منفی نشان دادند. همچنین، نانوکامپوزیت Ag2 با مدت زمان احیای 15 دقیقه ­ای، کاتالیزگر بهتری نسبت به نمونه­ Ag1 می­باشد، که این موضوع را می­توان به اندازه­ ریزتر نانوذرات آن نسبت داد.

کلیدواژه‌ها

موضوعات


[1] Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A, Artif, Application of gold nanoparticles in biomedical and drug delivery. Cell Nanomed. Biotechnol. 2016; 44(1):410–422.
[2] Wang L, Ali J, Zhang C, Mailhot G, Pan G, Simultaneously enhanced photocatalytic and antibacterial activities of TiO2/Ag composite nanofibers for wastewater purification. J. Environ. Chem. Eng. 2017; 8(1):057.
[3] Narayanan K B, Sakthivel N, Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interf. Sci. 2010; 156(1-2):1–13.
[4] Fayaz A M, Balaji K, Girilal M, Yadav R, Kalaichelvan P T, Venketesan R, Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 2010; 6:103–109.
[5] Panigrahi S, Kundu S, Ghosh S K, Nath S, Pal T, Sugar assisted evolution of mono-and bimetallic nanoparticles. Colloids Surf. A Physicochem. Eng. Aspects 2005; 264:133-138.
[6] Singh P, Kim Y, Zhang D, Yang D, Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016; 34(7):588-599.
[7] Iravani S, Bacteria in nanoparticle synthesis: current status and future prospects. Int. Sch. Res. Notices 2014; 18.
[8] Kalishwaralal K, Deepak V, Pandian S R K, Gurunathan S, Biological synthesis of gold nanocubes from Bacillus licheniformis. Bioresource Technol. 2009; 100:5356-5358.
[9] Rai M, Yadav A, Gade A, Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009; 27(1):76–83.
[10] Jung W K, Koo H C, Kim K W, Shin S, Kim S H, Park Y H, Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 2008; 74(7):2171–2178.
[11] Kim J S, Kuk E, Yu K N, Kim J H, Park S J, Lee H J, Kim S H, Park Y K, Park Y H, Hwang C Y, Kim Y K, Antimicrobial effects of silver nanoparticles. Nanomedicine: NBM 2007; 3(1):95–101.
[12] Wang P, Huang B, Qin X, Zhang X, Dai Y, Wei J, Whangbo M H, Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed. Engl. 2008; 47(41):7931-3.
[13] Devi T B, Ahmaruzzaman M, Bio-inspired sustainable and green synthesis of plasmonic Ag/AgCl nanoparticles for enhanced degradation of organic compound from aqueou phase. Environ. Sci. Pollut. Res. 2016; 23:17702–17714.
[14] Lombi E, Donner E, Taheri S, Tavakkoli E, Jämting A K, McClure S, Naidu R, Miller B W, Scheckel K G, Vasilev K, Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ. Pollut. 2013; 176:193–197.
[15] Vil’pan Y A, Grinshtein I L, Akatov A A, Gucer S, Direct atomic absorption determination of mercury in drinking water and urine using a two-step electrothermal atomizer. J. Anal. Chem. 2005; 60(1):38-44.
[16] Chang Y C, Chen D H, Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J. Hazard. Mater. 2009; 165(1-3):664-669.
[17] Rakhshan N, Mansournia M, J Kashi F, A magnetic four component nanocomposite: biosynthesis using Melissa officinalis leaves extract, application in high-performance naked-eye sensing of mercury(II) and eficient catalytic reduction of para-nitrophenol. J. Cluster Sci. 2022; 33(6):2559-2572.
[18] Jha A K, Prasad K, Kulkarni A, Green synthesis of silver nanoparticles: a review. Colloids. Surf. Biointerfaces 2009; 73:219–223.
[19] Korbekandi H, Iravani S, Abbasi S, Production of nanoparticles using organisms. Crit. Rev. Biotechnol. 2009; 29(4):279–306.
[20] Rakhshan N, Mansournia M, J Kashi F, Plant extract-strategy using Teucrium Polium stems to green synthesize Ag/AgCl bionanocomposite imprinted on Fe3O4/kaolinite and potentials in catalytic and chemosensor applications. Arab. J. Chem. 2022; 15(4):103719.
[21] Zheng Y, Shu J, Wang Z, Ag@AgCl composites with rough surfaces as bifunctional catalyst for the photooxidation and catalytic reduction of 4-nitrophenol. Mater. Lett. 2015; 158:339–342.
[22] Shu J, Wang Z, Xia G, Zheng Y, Yang L, Zhang W, One-pot synthesis of Ag@AgCl hybrid photocatalyst with high photocatalytic activity and photostability under visible light and sunlight irradiation. Chem. Eng. J. 2014; 252:374–81.
[23] Meva F E, Segnou M L, Ebongue C O, Ntoumba A A, Kedi P B E, Deli V, Etoh M A, Mpondo E M, Spectroscopic synthetic optimizations monitoring of silver nanoparticles formation from Megaphrynium macrostachyum leaf extract. Rev. Bras. Farmacogn. 2016; 26:640–646.
[24] Jenkins R, Snyder R L, Introduction to X-Ray powder diffractometry. Inc. New York. 1996; 138.
[25] Sun L, He J, An S, Zhang J, Zheng J, Ren D, Recyclable Fe3O4@SiO2-Ag magnetic nanospheres for the rapid decolorizing of dye pollutants. Chin. J. Catal. 2013; 34(7):1378–1385.
[26] Kong X K, Zhu H Y, Chen C L, Huang G M, Chen Q W, Insights into the reduction of 4-nitrophenol to 4-aminophenol on catalysts. Chem. Phys. Lett. 2017; 684:148.
[27] Kumar C G, Mamidyala S K, Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf. B 2011; 84(2):462–466.
[28] Deepak V, Umamaheshwaran P S, Guhan K, Nanthini R A, Krithiga B, Meeran N, Jaithoon H, Gurunathan S, Synthesis of gold and silver nanoparticles using purified URAK. Colloids Surf. B 2011; 86(2):353–358.
[29] Sathiyanarayanan G, Kiran G S, Selvin J, Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf. B 2013; 102:13–20.
[30] Gopinathan P, Ashok A M, Selvakumar R, Bacterial flagella as biotemplate for the synthesis of silver nanoparticle impregnated bionanomaterial. Appl. Surf. Sci. 2013; 276:717–722.
[31] Parit S B, Karade V C, Patil R B, Pawar N V, Dhavale R P, Tawre M, Pardesi K, Jadhav U U, Dawkar V V, Tanpure R S, Kim J H. Bioinspired synthesis of multifunctional silver nanoparticles for enhanced antimicrobial and catalytic applications with tailored SPR properties. Mater. Today Chem. 2020; 17:100285.
[32] Wang N, Zeng S, Yuan H, Huang J, Morphology-dependent interfacial interactions of Fe2O3 with Ag nanoparticles for determining the catalytic reduction of p-nitrophenol. J. Environ. Sci. 2020.
[33] Song X, Shi X, Biosynthesis of Ag/reduced graphene oxide nanocomposites using Shewanella oneidensis MR-1 and their antibacterial and catalytic applications. Appl. Surf. Sci. 2019; 491:682–689.
[34] Boonupara T h, Kajitvichyanukul P, Facile synthesis of Plasmonic Ag/AgCl nanoparticles with Aqueous Garlic Extract (Allium Sativum L.) for Visible-light triggered antibacterial activity. Mater. Lett. 2020; 277:128362.
[35] Kubo A L, Capjak I, Vrcek I V, Bondarenko O M, Kurvet I, Vija H, Ivask A, Kasemets K, Kahru A. Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Colloids Surf. B 2018; 170:401-410.
[36] Hassan K T, Ibraheem I J, Hassan O M, Obaid A S, Ali H H, Salih T A, Kadhim M S. Facile green synthesis of Ag/AgCl nanoparticles derived from Chara algae extract and evaluating their antibacterial activity and synergistic effect with antibiotics. J. Environ. Chem. Eng. 2021; 9:105359.