[1] Jafarirad, S. (2015) Dendritic Architectures: Theranostic Applications, Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Taylor & Francis. 2391-2399.
[2] Jafarirad, S. (2015) Dendritic architectures: Therapeutics, Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Taylor & Francis. 2400-2407.
[3] Jafarirad S. (2015) Dendritic Architectures: Delivery Vehicles, Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. Taylor & Francis. 2376-2382.
[4] Mahmoudi, M. et al. (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem. Rev. 111, 5610–5637.
[5] Mahmoudi, M., Hofmann, H., Rothen-Rutishauser, B., and Petri-Fink, A. (2012) Assessing the In Vitro and In Vivo Toxicity of Superparamagnetic Iron OxideNanoparticles. Chem. Rev. 112, 2323–2338.
[6] Casals, E., Pfaller, T., Duschl, A., Oostingh, GJ., and Puntes, V. (2010) Time evolution of the nanoparticle protein corona. ACS Nano.4(7),3623–32.
[7] Del Pino, P., Pelaz, B., Zhang, Q., Maffre, P., Nienhaus, GU., and Parak, WJ. (2014) Protein corona formation around nanoparticles - from the past to the future. Mat Horizons.1(3),301–13.
[8] Pearson, RM., Juettner, VV., and Hong, S. (2014) Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery. Front Chem. 2 (108), 2296-2646.
[9] Winzen, S., Schoettler, S., Baier, G., Rosenauer, C., Mailaender, V., Landfester, K., and et al. (2015) Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition. Nanoscale. 7(7),2992–3001.
[10] Monopoli, M. P., Bombelli, F. B., and Dawson, K. A. (2011) Nanobiotechnology: nanoparticle coronas take shape. Nat. Nanotechnol. 6, 11–12 .
[11] Sakulkhu, U., Mahmoudi, M., Maurizi, L., Salaklang, J., and Hofmann, H. (2014) Protein Corona Composition of Superparamagnetic Iron Oxide Nanoparticles with Various Physico-Chemical Properties and Coatings. SCIENTIFIC REPORTS. 4, 5020-5028.
[12] Ziyao, L., Xiaohui, Z., Minggang, Y., Qi, Y., Xianghui, X., Fang, L., Yao, W., and Zhongwei G. (2016) Magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors. Nanoscale. 8, 7544-7555.
[13] Lynch, I., and Dawson, and K. A. (2008) Protein-nanoparticle interactions. Nano Today. 3, 40-47.
[14] Sharma, VK., Alipour, A., Soran-Erdem, Z., Aykut, ZG., and Demir, HV. (2015) Highly monodisperse low-magnetization magnetite nanocubes as simultaneous T(1)–T(2) MRI contrast agents. Nanoscale.7(23),10519–10526.
[15] Kossatz, S., Grandke, J., Couleaud, P., and et al. (2015) Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res. 17(1),1–17.
[16] Shi, D., Sadat, ME., Dunn, AW., and Mast, DB. (2015) Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale. 7(18),8209–8232.
[17] Martens, U., Böttcher, D., Talbot, D., Bornscheuer, U., Abou-Hassan, A., and Delcea, M. (2019) Maghemite nanoparticles stabilize the protein corona formed with transferrin presenting different iron-saturation levels. Nanoscale. 11, 16063-16071.
[18] Vogel, C., Charrier, J, Wu, D., McFall, A., Li, W., Abid, A., Kennedy, I., and Anastasio, C. (2016) Physicochemical properties of iron oxide nanoparticles that contribute to cellular ROS-dependent signaling and acellular production of hydroxyl radical. Free Radical Research. 50(11), 1153-1164.
[19] Zhenfeng, Y.,Eich, C., and Cruz, L. (2020) Recent Advances in Rare-Earth-Doped Nanoparticles for NIR-II Imaging and Cancer Theranostics. Front. Chem. 8.
[20] Weiwei, H., Chao, C., Yuxiang, Y., Hongming, Y., and Yongxia, L. (2012) a study on the magnetic and photoluminescence properties of Eun+ and Sm3+ doped Fe3O4 nanoparticles. Journal of Nanoscience and Nanotechnology. 12, 4621–4634.
[21] Aghazadeh1, M., and Ganjali, M. (2017) Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance: a novel preparation strategy and characterization. J Mater Sci Ceramics. 53, 295–308.
[22] Lastovina, T.A., Budnyk, A.P., Kudryavtsev, E.A., Nikolsky, A.V., Kozakov, A.T., Chumakov, N.K., Emelyanov, A.V., and Soldatov, A.V. (2017) Solvothermal synthesis of Sm3+-doped Fe3O4 nanoparticles. Materials Science and Engineering. 80, 110–116.
[23] Silva, C.R., Smith, S., Shim, I., Pyun, J., Gutu, T., Jiao, J., and Zheng, Z. (2009) Lanthanide(III)-doped magnetite nanoparticles. J. Am. Chem. Soc. 131, 6336–6337.
[24] Pourali, P., Neuhöferová, E., Dzmitruk, V., Benson, V. (2022) Investigation of Protein Corona Formed Around Biologically Produced Gold Nanoparticles. Materials (Basel). 15(13), 4615.
[25] Behzad, F., Jafarirad, S., Samadi, A., and Barzegar, A. (2020) A systematic investigation on spectroscopic, conformational, and interactional properties of polypeptide/nanomaterial complex: effects of bio-based synthesized maghemite nanocomposites on human serum albumin. Soft Materials. 18(4), 471–486.
[26] Jafarirad, S., Kosari Nasab, M., Tavana, R., Mahjouri, S., and Ebadollahi, R. (2021) Impacts of manganese bio-based nanocomposites on phytochemical classification, growth and physiological responses of Hypericum perforatum L. shoot cultures. Ecotoxicology and Environmental Safety. 209, 111841.
[27] Nemati, M., Bani, F., Sepasi, T., Eghdam Zamiri, R., Rasmi, Y., Kahroba, H., Rahbarghazi, R., Sadeghi, M.R., Wang, Y., Zarebkohan, A. and Gao. H. (2021) Unraveling the Effect of Breast Cancer Patients’ Plasma on the Targeting Ability of Folic Acid-Modified Chitosan Nanoparticles. Mol. Pharmaceutics , 18 (12), 4341-4353.
[28] Sengottiyan, S., Mikolajczyk, A., Jagiełło, K., Swirog, M. and Puzyn, M. (2023) Core, Coating, or Corona? The Importance of Considering Protein Coronas in nano-QSPR Modeling of Zeta Potential. ACS Nano. 17 (3), 1989–1997.
[29] Bondžić, AM., Jovanović, D., Arsenijević, N., Laban, B., Lazarević Pašti, T., Klekotka, U., Bondžić, BP. (2022) Soft Protein Corona as the Stabilizer of the Methionine-Coated Silver Nanoparticles in the Physiological Environment: Insights into the Mechanism of the Interaction. Int J Mol Sci. 23(16), 8985.
[30] Jafarirad, S., Kosari Nasab, M., Tavana, R., Mahjouri, S., and Ebadollahi, R. (2021) Impacts of manganese bio-based nanocomposites on phytochemical classification, growth and physiological responses of Hypericum perforatum L. shoot cultures. Ecotoxicology and Environmental Safety. 209, 111841.
[31] Jafarirad, S., Kordi, M., and Kosari-Nasab, M. (2018) Investigation on Microstructure, Lattice and Structural Chemistry of Biogenic Silver Nanoparticles. International Journal of Nanoscience and Nanotechnology. 14 (3), 197-206.
[32] Mahmoudi, M., Landry, M.P., Moore, A. and etal. (2023) The protein corona from nanomedicine to environmental science. Nat Rev Mater. 8, 422–438.
[33] Farshbaf, M., Valizadeh, H., Panahi, Y., et al. (2022) The impact of protein corona on the biological behavior of targeting nanomedicines. International Journal of Pharmaceutics. 614, 121458.
[34] Papini, E., and et al. (2020) Opsonins and Dysopsonins of Nanoparticles: Facts, Concepts, and Methodological Guidelines. Frontiers in immunology. 11, 567365.
[35] Liu, N., Tang, M., Ding, J., (2020) The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells. Chemosphere. 245, 125624.
[36] Abraham, A.N., Sharma, T.K., Bansal, V. and Shukla, S. (2018) Phytochemicals as Dynamic Surface Ligands To Control Nanoparticle–Protein Interactions. ACS Omega. 3 (2), 2220–2229.