Microenvironmental engineering of lipase enzyme and effect of silica nanolayer on stabilization and refolding of enzyme

Document Type : Original Research

Authors

Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.

Abstract
Researchers are currently directing their efforts toward developing new enzyme stabilization and enhancement strategies to broaden their application in various industries. This study utilized a unified platform to stabilize and safeguard proteins in industrial settings. Despite the wide-ranging industrial applications of lipases, their utility in industrial processes is limited by their susceptibility to degradation under harsh environmental conditions. In our study, we used a dual-purpose strategy that involved both enzyme stabilization and the shielding of an organosilica protective layer. After expressing and purifying the recombinant lipase enzyme, we immobilized it onto silica nanoparticles and shielded it with an organosilica nanolayer to protect the enzyme. We meticulously examined the optimal thickness of the protective layer and its influence on enzyme stabilization against environmental stressors. Our research findings demonstrate that the immobilized enzyme exhibited a remarkable level of stability compared to its free enzyme when subjected to various factors, such as fluctuations in temperature and exposure to chemical agents. Furthermore, the immobilized samples displayed optimal activity across a broad range of temperatures, highlighting this approach's adaptability and efficacy. Notably, the organosilica layer significantly bolstered the reactivity recovery of denatured proteins with SDS and urea, highlighting the versatile applications of this method. These findings indicated that our present platform has great potential to improve the efficiency and stability of industrial enzymes against various environmental challenges.

Keywords

Subjects


1. Gupta R, Kumari A, Syal P, Singh Y. 2015. Progress in lipid research 57:40-54
2. Contesini FJ, Calzado F, Madeira J, Rubio MV, Zubieta MP, et al. 2017. Fungal Metabolites. Reference Series in Phytochemistry:639-66
3. Maghraby YR, El-Shabasy RM, Ibrahim AH, Azzazy HME-S. 2023. ACS omega 8:5184-96
4. Franssen MC, Steunenberg P, Scott EL, Zuilhof H, Sanders JP. 2013. Chemical Society Reviews 42:6491-533
5. Bernal C, Rodriguez K, Martinez R. 2018. Biotechnology Advances 36:1470-80
6. Rodríguez-Núñez K, Bernal C, Martínez R. 2021. International Journal of Biological Macromolecules 170:61-70
7. Dragomirescu M, Radulov I, Berbecea A, Hotea I, Crista L, et al. 2022. Journal of Pharmaceutical Negative Results:125-34
8. Antony C, Ghodke PK, Thiyagarajan S. 2022. In Enzymes in the Valorization of Waste:97-128: CRC Press. Number of 97-128 pp.
9. Sun T, Dong Z, Wang J, Huang F-H, Zheng M-M. 2020. ACS Sustainable Chemistry & Engineering 8:17280-90
10. Correro MR, Takacs M, Sykora S, Corvini PF-X, Shahgaldian P. 2016. RSC advances 6:89966-71
11. Correro MR, Moridi N, Schützinger H, Sykora S, Ammann EM, et al. 2016. Angewandte Chemie 128:6393-7
12. Giunta CI, Cea-Rama I, Alonso S, Briand ML, Bargiela R, et al. 2020. ACS nano 14:17652-64
13. Stöber W, Fink A, Bohn E. 1968. Journal of colloid and interface science 26:62-9
14. Ghasemi S, Heidary M, Faramarzi MA, Habibi Z. 2014. Journal of Molecular Catalysis B: Enzymatic 100:121-8
15. Ismail AR, Baek K-H. 2020. International Journal of Biological Macromolecules 163:1624-39
16. Shuai W, Das RK, Naghdi M, Brar SK, Verma M. 2017. Biotechnology and applied biochemistry 64:496-508
17. Popat A, Hartono SB, Stahr F, Liu J, Qiao SZ, Lu GQM. 2011. Nanoscale 3:2801-18
18. Breger JC, Vranish JN, Oh E, Stewart MH, Susumu K, et al. 2023. Nature Communications 14:1757
19. Lin N, Gao L, Chen Z, Zhu JH. 2011. New Journal of Chemistry 35:1867-75
20. Ayub J, Saeed MU, Hussain N, Zulfiqar I, Mehmood T, et al. 2023. Topics in Catalysis 66:625-48
21. Briand ML, Bikaki M, Puorger C, Corvini PF-X, Shahgaldian P. 2021. RSC advances 11:810-6
22. Cui J, Sun B, Lin T, Feng Y, Jia S. 2018. International journal of biological macromolecules 117:673-82
23. Shi J, Tian Y, Liu H, Yang D, Zhang S, et al. 2017. Industrial & Engineering Chemistry Research 56:10615-22
24. Briand ML, Gebleux R, Richina F, Correro MR, Grether Y, et al. 2020. Chemical communications 56:5170-3
25. Siódmiak T, Dulęba J, Haraldsson GG, Siódmiak J, Marszałł MP. 2023. Catalysts 13:887
26. Hamdan SH, Maiangwa J, Ali MSM, Normi YM, Sabri S, Leow TC. 2021. Applied microbiology and biotechnology:1-26
27. Ozmen EY, Sezgin M, Yilmaz M. 2009. Journal of Molecular Catalysis B: Enzymatic 57:109-14
28. Arica MY. 2000. Journal of applied polymer science 77:2000-8
29. Arıca MY, Bayramoǧlu G. 2004. Journal of Molecular Catalysis B: Enzymatic 27:255-65
30. Niu W-N, Li Z-P, Zhang D-W, Yu M-R, Tan T-W. 2006. Journal of Molecular Catalysis B: Enzymatic 43:33-9
31. Matsumoto M, Ohashi K. 2003. Biochemical Engineering Journal 14:75-7
32. Nazemi SA, Olesińska M, Pezzella C, Varriale S, Lin C-W, et al. 2021. Chemical Communications 57:11960-3
33. Sood A, Kaur M, Gupta R. 2023. Current Biotechnology 12:25-36
34. Guerrand D. 2017. OCL Oilseeds and fats crops and lipids 24:D403
35. Sahoo RK, Das A, Gaur M, Sahu A, Sahoo S, et al. 2020. Preparative Biochemistry & Biotechnology 50:578-84
36. Al-Ghanayem AA, Joseph B, Alhussaini MS, Ramteke PW. 2022. Microbial extremozymes:223-30
37. Cumbo A, Lorber B, Corvini PF-X, Meier W, Shahgaldian P. 2013. Nature communications 4:1503
38. Kato A, Ohashi H. 2021. Industrial & Engineering Chemistry Research 60:10076-82
39. Odunuga O, Tovar CN. 2020. The FASEB Journal 34:1-
40. Yamaguchi S, Yamamoto E, Mannen T, Nagamune T, Nagamune T. 2013. Biotechnology journal 8:17-31
41. Attique SA, Hussain N, Bilal M, Iqbal HM. 2023. In Biocatalyst Immobilization:37-54: Elsevier. Number of 37-54 pp.