Dengue fever disease: diagnosis, treatment and control strategies

Document Type : Analytic Review

Authors

1 Master's student in Molecular Biotechnology, Department of Biological Sciences, University Complex of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.

2 PhD in Biochemistry, Associate Professor, Department of Biological Sciences, University Complex of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.

3 PhD in Virology, Department of Medical Virology, Institut Pasteur, Tehran, Iran

Abstract
Since 2012, dengue disease has been considered as one of the most important viral diseases transmitted through arthropods and has become one of the major health problems in tropical and subtropical regions of the world In recent years. This virus has four serotypes and is transmitted through the Aedes mosquito. The aim of this Work is to investigate methods for diagnosing, treating, and controlling dengue disease. The method of conducting the study was based on observation and interpretation of information obtained from relevant scientific articles and books. This study was conducted in the spring and summer of 1403 by checking keywords such as Dengue virus, Aedes aegypti, dengue vaccine, detection, protection, chemical control on NCBI, Google, PubMed, WHO search engines. The molecular methods (real-time PCR) and immunoassay are often used to detect dengue virus. In order to prevent the disease, it is also recommended to control the life cycle of Aedes mosquito and use of quadrivalent live and attenuated Dengvxia and TAK-003 vaccines. The clinical treatment of this disease is done using serum therapy and the use of liquids. Finally, chemical and biological control methods of Aedes mosquito are also recommended as strategies to deal with this disease. In this review article, while describing the specific characteristics of dengue virus, the diagnostic and treatment methods of this disease have been scientifically investigated. It is also presented how to prevent control of this disease.

Keywords

Subjects


1. World Health Organization. (2012-2020). Global strategy for dengue prevention and control.
2. Parveen, S., Riaz, Z., Saeed, S., Ishaque, U., Sultana, M., Faiz, Z., ... & Marium, A. (2023). Dengue hemorrhagic fever: a growing global menace. Journal of water and health, 21(11), 1632-1650.
3. Carvalho, S. A., da Silva, S. O., & Charret, I. D. C. (2019). Mathematical modeling of dengue epidemic: control methods and vaccination strategies. Theory in Biosciences, 138(2), 223-239.
4. Tian, G., Tan, J., Liu, B., Xiao, M., & Xia, Q. (2024). Field-deployable viral diagnostic tools for dengue virus based on Cas13a and Cas12a. Analytica Chimica Acta, 342838.
5. Lee, Y., Choi, J., Han, H. K., Park, S., Park, S. Y., Park, C., ... & Min, J. (2021). Fabrication of ultrasensitive electrochemical biosensor for dengue fever viral RNA Based on CRISPR/Cpf1 reaction. Sensors and Actuators B: Chemical, 326, 128677.
6. Gubler, D. J. (2002). The global emergence/resurgence of arboviral diseases as public health problems. Archives of medical research, 33(4), 330-342.
7. Centers for Disease Control and Prevention (CDC. (2010). Locally acquired dengue--Key West, Florida, 2009-2010. MMWR: Morbidity & Mortality Weekly Report, 59(19).
8. Parrish NF, Iwasaki YW. (2022). piRNA, methods and protocols.
9. Patel, S. S., Rauscher, M., Kudela, M., & Pang, H. (2023). Clinical safety experience of TAK-003 for dengue fever: a new tetravalent live attenuated vaccine candidate. Clinical Infectious Diseases, 76(3), e1350-e1359.
10. Prompetchara, E., Ketloy, C., Thomas, S. J., & Ruxrungtham, K. (2020). Dengue vaccine: Global development update. Asian Pac J Allergy Immunol, 38(3), 178-185.
11. Li, M., Yang, T., Kandul, N. P., Bui, M., Gamez, S., Raban, R., ... & Akbari, O. S. (2020). Development of a confinable gene drive system in the human disease vector Aedes aegypti. Elife, 9, e51701.
12. Wang, J., Xia, Q., Wu, J., Lin, Y., & Ju, H. (2021). A sensitive electrochemical method for rapid detection of dengue virus by CRISPR/Cas13a-assisted catalytic hairpin assembly. Analytica Chimica Acta, 1187, 339131.
13. Kabir, M. A., Zilouchian, H., Younas, M. A., & Asghar, W. (2021). Dengue detection: advances in diagnostic tools from conventional technology to point of care. Biosensors, 11(7), 206.
14. Heydarifard, Z., Heydarifard, F., Mousavi, FS., Zandi, M. (2024). Dengue fever: a decade of burden in Iran. Front Public Health.12:1484594.
15. Chen, P. K., Chang, J. H., Ke, L. Y., Kao, J. K., Chen, C. H., Yang, R. C., ... & Tsai, J. J. (2023). Advanced detection method for dengue NS1 protein using ultrasensitive ELISA with thio-NAD cycling. Viruses, 15(9), 1894.
16. Eivazzadeh-Keihan, R., Pashazadeh-Panahi, P., Mahmoudi, T., Chenab, K. K., Baradaran, B., Hashemzaei, M., ... & Maleki, A. (2019). Dengue virus: a review on advances in detection and trends–from conventional methods to novel biosensors. Microchimica Acta, 186, 1-24.
17. Tran, L., & Park, S. (2021). Highly sensitive detection of dengue biomarker using streptavidin-conjugated quantum dots. Scientific Reports, 11(1), 15196.
18. Mahjaf, G. M., & Abdelgader, L. M. A. (2024). The Conventional Diagnostic Techniques of Dengue Fever in Endemic Areas: A Review of The Approaches with A Focus on Advanced Diagnostic Tools. Journal of Virology and Vaccination, 3(1).
19. Sheikhi, F., Zeinoddini, M., Jalili, S. (2023) Optimization for Rapid Detection of Staphylococcus aureus using Real-time LAMP. Journal of Applied Biotechnology Reports, 10(2): 984-991.
20. Ly, H. (2024). Dengue fever in the Americas. Virulence, 15(1), 2375551.
21. Namirimu, T., & Kim, S. (2024). Dengue fever: epidemiology, clinical manifestations, diagnosis, and therapeutic strategies. Annals of Clinical Microbiology, 27(2), 131-141.
22. Ma, Z., Guo, J., Jiang, L., Zhao, S. (2024) Lateral flow immunoassay (LFIA) for dengue diagnosis: Recent progress and prospect. Talanta. 267:125268.
23. Torres-Flores, J. M., Reyes-Sandoval, A., & Salazar, M. I. (2022). Dengue vaccines: an update. BioDrugs, 36(3), 325-336.
24. Hasan, J., & Bok, S. (2024). Plasmonic Fluorescence Sensors in Diagnosis of Infectious Diseases. Biosensors, 14(3), 130.
25. Farooq, S., & Zezell, D. M. (2024). Advances in metallic-based localized surface plasmon sensors for enhanced tropical disease detection: a comprehensive review. Plasmonics, 19(4), 1721-1742.
26. Tricou, V., Yu, D., Reynales, H., Biswal, S., Saez-Llorens, X., Sirivichayakul, C., ... & Wallace, D. (2024). Long-term efficacy and safety of a tetravalent dengue vaccine (TAK-003): 4· 5-year results from a phase 3, randomised, double-blind, placebo-controlled trial. The Lancet Global Health, 12(2), e257-e270.
27. Scott, L. J. (2016). Tetravalent dengue vaccine: a review in the prevention of dengue disease. Drugs, 76, 1301-1312.
28. Bhatt, L., & Pandey, D. (2023). Review on Dengue Fever. International Journal of Multidisciplinary Educational Research, 12(7), 74-86.
29. Zende, A. V., Shinde, Y. A., Sonwalkar, R. R., & Parekar, P. B. (2024). A Comprehensive Review Article on Dengue Fever. South Asian Res J Pharm Sci, 6(3), 89-105.
30. Patel, J. P., Saiyed, F., & Hardaswani, D. (2024). Dengue Fever Accompanied by Neurological Manifestations: Challenges and Treatment. Cureus, 16(5).
31. Schaefer, T. J., Panda, P. K., & Wolford, R. W. (2022). Dengue Fever. National Library of Medicine. StatPearl Publishing| https://tinyurl. com/223vjd8e| Accessed on August, 26, 2022.
32. Hosny, R. A., Abu-Gdairi, R., & El-Bably, M. K. (2024). Enhancing Dengue fever diagnosis with generalized rough sets: utilizing initial-neighborhoods and ideals. Alexandria Engineering Journal, 94, 68-79.
33. Srivastava S, Najeebullah GS, Rajan N. (2024). A review of dengue transmission and dengue therapy among people. World;3(2).
34. Cerna, E. A. F., Sherman, C., & Martinez, M. M. (2023). Dengue Reduction through Vector Control. In Dengue Fever in a One Health Perspective-Latest Research and Recent Advances. IntechOpen.
35. Hustedt, J. C., Boyce, R., Bradley, J., Hii, J., & Alexander, N. (2020). Use of pyriproxyfen in control of Aedes mosquitoes: A systematic review. PLoS neglected tropical diseases, 14(6), e0008205.
36. Rahman, A. U., Khan, I., Usman, A., & Khan, H. (2024). Evaluation of Insect Growth Regulators (IGRs) as biological pesticides for control of Aedes aegypti mosquitoes. Journal of Vector Borne Diseases, 61(1), 129-135.
37. Dengue, W. H. O. I. (2009). Guidelines for diagnosis, Treatment. Prevention and Control. (No Title).
38. Mohammad, A. M. (2024). Biological Control of the Dengue Transmitted Mosquitoes Aedes aegypti Using Bacillus thuringiensis. Al-Azhar Journal of Agricultural Research, 49(1), 196-200.
39. Flores, H. A., & O’Neill, S. L. (2018). Controlling vector-borne diseases by releasing modified mosquitoes. Nature Reviews Microbiology, 16(8), 508-518.
40. Hershan, A. A. (2023). Dengue Virus: Molecular Biology and Recent Developments in Control Strategies, Prevention, Management, and Therapeutics. Journal of Pharmacology and Pharmacotherapeutics, 14(2), 107-124.
41. Ratcliffe, N. A., Furtado Pacheco, J. P., Dyson, P., Castro, H. C., Gonzalez, M. S., Azambuja, P., & Mello, C. B. (2022). Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasites & vectors, 15(1), 112.
42. Ogunlade, S. T., Meehan, M. T., Adekunle, A. I., & McBryde, E. S. (2023). A systematic review of mathematical models of dengue transmission and vector control: 2010–2020. Viruses, 15(1), 254.
43. Morán‐Aceves, B. M., Marina, C. F., Dor, A., Liedo, P., & Toledo, J. (2021). Sex separation of Aedes spp. mosquitoes for sterile insect technique application: a review. Entomologia Experimentalis et Applicata, 169(10), 918-927.
44. Neira Oviedo, M. V. (2015). Assessment of the impact of potential tetracycline exposure on the phenotype of Aedes aegypti OX513A: implications for field use.
45. Zhang, B., Zhang, Q. Q., Cai, Y. Y., Yan, X. T., Zhai, Y. Q., Guo, Z., & Ying, G. G. (2023). Environmental emissions and pollution characteristics of mosquitocides for the control of dengue fever in a typical urban area. Science of The Total Environment, 867, 161513.
46. Gato, R., Menéndez, Z., Prieto, E., Argilés, R., Rodríguez, M., Baldoquín, W., ... & Bouyer, J. (2021). Sterile insect technique: successful suppression of an Aedes aegypti field population in Cuba. Insects, 12(5), 469.
47. Bui, M., Dalla Benetta, E., Dong, Y., Zhao, Y., Yang, T., Li, M., ... & Akbari, O. S. (2023). CRISPR mediated transactivation in the human disease vector Aedes aegypti. PLoS pathogens, 19(1), e1010842.