[1] E. Petersen et al., “Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics,” Lancet Infect Dis, vol. 20, no. 9, pp. e238–e244, Sep. 2020, doi: 10.1016/S1473-3099(20)30484-9.
[2] G. A. Smith and L. W. Enquist, “Break ins and break outs: viral interactions with the cytoskeleton of Mammalian cells,” Annu Rev Cell Dev Biol, vol. 18, pp. 135–161, 2002, doi: 10.1146/ANNUREV.CELLBIO.18.012502.105920.
[3] P. M. Jean Beltran, K. C. Cook, and I. M. Cristea, “Exploring and Exploiting Proteome Organization during Viral Infection,” J Virol, vol. 91, no. 18, Sep. 2017, doi: 10.1128/JVI.00268-17.
[4] G. Gerold, J. Bruening, B. Weigel, and T. Pietschmann, “Protein Interactions during the Flavivirus and Hepacivirus Life Cycle,” Mol Cell Proteomics, vol. 16, no. 4 suppl 1, pp. S75–S91, Apr. 2017, doi: 10.1074/MCP.R116.065649.
[5] S. Sadegh et al., “Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing,” Nat Commun, vol. 11, no. 1, Dec. 2020, doi: 10.1038/S41467-020-17189-2.
[6] S. Li et al., “Comprehensive characterization of human–virus protein-protein interactions reveals disease comorbidities and potential antiviral drugs,” Comput Struct Biotechnol J, vol. 20, pp. 1244–1253, Jan. 2022, doi: 10.1016/J.CSBJ.2022.03.002.
[7] N. Goodacre, P. Devkota, E. Bae, S. Wuchty, and P. Uetz, “Protein-protein interactions of human viruses,” Semin Cell Dev Biol, vol. 99, pp. 31–39, Mar. 2020, doi: 10.1016/j.semcdb.2018.07.018.
[8] L. Young, R. L. Jernigan, and D. G. Covell, “A role for surface hydrophobicity in protein‐protein recognition,” Protein Science, vol. 3, no. 5, pp. 717–729, 1994, doi: 10.1002/PRO.5560030501/TITLE/A_ROLE_FOR_SURFACE_HYDROPHOBICITY_IN_PROTEIN_PROTEIN_RECOGNITION.
[9] S. Jones and J. M. Thornton, “Analysis of protein-protein interaction sites using surface patches,” J Mol Biol, vol. 272, no. 1, pp. 121–132, Sep. 1997, doi: 10.1006/jmbi.1997.1234.
[10] F. Pazos, M. Helmer-Citterich, G. Ausiello, and A. Valencia, “Correlated mutations contain information about protein - protein interaction,” J Mol Biol, vol. 271, no. 4, pp. 511–523, Aug. 1997, doi: 10.1006/jmbi.1997.1198.
[11] X. Gallet, B. Charloteaux, A. Thomas, and R. Brasseur, “A fast method to predict protein interaction sites from sequences,” J Mol Biol, vol. 302, no. 4, pp. 917–926, Sep. 2000, doi: 10.1006/JMBI.2000.4092.
[12] H. M. Chen, J. X. Liu, D. Liu, G. F. Hao, and G. F. Yang, “Human-virus protein-protein interactions maps assist in revealing the pathogenesis of viral infection,” Rev Med Virol, vol. 34, no. 1, p. e2517, Jan. 2024, doi: 10.1002/RMV.2517.
[13] S. S. Raj and S. S. V. Chandra, “Significance of Sequence Features in Classification of Protein–Protein Interactions Using Machine Learning,” Protein Journal, vol. 43, no. 1, pp. 72–83, Feb. 2024, doi: 10.1007/S10930-023-10168-8/METRICS.
[14] B. Y. S. Li, L. F. Yeung, and G. Yang, “Pathogen host interaction prediction via matrix factorization,” Proceedings - 2014 IEEE International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2014, pp. 357–362, Dec. 2014, doi: 10.1109/BIBM.2014.6999185.
[15] E. Nourani, F. Khunjush, and S. Durmuş, “Computational prediction of virus–human protein–protein interactions using embedding kernelized heterogeneous data,” Mol Biosyst, vol. 12, no. 6, pp. 1976–1986, May 2016, doi: 10.1039/C6MB00065G.
[16] F. E. Eid, M. Elhefnawi, and L. S. Heath, “DeNovo: virus-host sequence-based protein-protein interaction prediction,” Bioinformatics, vol. 32, no. 8, pp. 1144–1150, Apr. 2016, doi: 10.1093/BIOINFORMATICS/BTV737.
[17] A. H. Basit, W. A. Abbasi, A. Asif, S. Gull, and F. U. A. A. Minhas, “Training host-pathogen protein-protein interaction predictors,” J Bioinform Comput Biol, vol. 16, no. 4, Aug. 2018, doi: 10.1142/S0219720018500142.
[18] T. N. Dong, G. Brogden, G. Gerold, and M. Khosla, “A multitask transfer learning framework for the prediction of virus-human protein–protein interactions,” BMC Bioinformatics, vol. 22, no. 1, Dec. 2021, doi: 10.1186/S12859-021-04484-Y.
[19] W. Liu-Wei, Ş. Kafkas, J. Chen, N. J. Dimonaco, J. Tegnér, and R. Hoehndorf, “DeepViral: prediction of novel virus–host interactions from protein sequences and infectious disease phenotypes,” Bioinformatics, vol. 37, no. 17, pp. 2722–2729, Sep. 2021, doi: 10.1093/BIOINFORMATICS/BTAB147.
[20] X. Yang, S. Yang, Q. Li, S. Wuchty, and Z. Zhang, “Prediction of human-virus protein-protein interactions through a sequence embedding-based machine learning method,” Comput Struct Biotechnol J, vol. 18, pp. 153–161, Jan. 2019, doi: 10.1016/J.CSBJ.2019.12.005.
[21] X. Zhou, B. Park, D. Choi, and K. Han, “A generalized approach to predicting protein-protein interactions between virus and host,” BMC Genomics, vol. 19, no. 6, pp. 69–77, Aug. 2018, doi: 10.1186/S12864-018-4924-2/TABLES/8.
[22] X. Yang et al., “Multi-modal features-based human-herpesvirus protein–protein interaction prediction by using LightGBM,” Brief Bioinform, vol. 25, no. 2, Jan. 2024, doi: 10.1093/BIB/BBAE005.
[23] A. Bateman et al., “UniProt: the universal protein knowledgebase in 2021,” Nucleic Acids Res, vol. 49, no. D1, pp. D480–D489, Jan. 2021, doi: 10.1093/NAR/GKAA1100.
[24] A. Behjati, F. Zare-Mirakabad, S. S. Arab, and A. Nowzari-Dalini, “Protein sequence profile prediction using ProtAlbert transformer,” Comput Biol Chem, vol. 99, Aug. 2022, doi: 10.1016/j.compbiolchem.2022.107717.
[25] Z. Ghorbanali, F. Zare-Mirakabad, N. Salehi, M. Akbari, and A. Masoudi-Nejad, “DrugRep-HeSiaGraph: when heterogenous siamese neural network meets knowledge graphs for drug repurposing,” BMC Bioinformatics 2023 24:1, vol. 24, no. 1, pp. 1–31, Oct. 2023, doi: 10.1186/S12859-023-05479-7.
[26] B. Krawczyk, “Learning from imbalanced data: open challenges and future directions,” Progress in Artificial Intelligence, vol. 5, no. 4, pp. 221–232, Nov. 2016, doi: 10.1007/S13748-016-0094-0/TABLES/1.