بررسی اثر دوقطبی الکتریکی مارپیچ‌های آلفای موازی ناهمسو بر ساختار و عملکرد فتوپروتئین نمیوپسین 2

نویسندگان

1 دانشگاه زنجان

2 دانشگاه گیلان

چکیده
در این پژوهش، میانکنش الکترواستاتیک بین سومین و چهارمین مارپیچ‌های موازیِ ناهمسو در نمیوپسین 2 مورد مطالعه قرار گرفت. بر حسب شیوه توزیع آمینواسیدهای باردار مثبت و منفی در انهای آمینی و کربوکسیلی مارپیچ‌ها، آن‌ها را به عنوان دو نانوسیم با ماهیت دوقطبی الکتریکی فرض کردیم. از طریق جهش دادن فنیل‌آلانین به آرژنین در موقعیت 87 از مارپیچ چهارم، هدف ما تقویت دوقطبی الکتریکی این مارپیچ بوده است. برای ایجاد مدل از ساختار سه‌بُعدی از فتوپروتئین‌های وحشی و جهش‌یافته از برنامه MODELLER استفاده شد و از تکنیک جهش‌زایی هدفمند برای تهیه سیستم بیان استفاده شد. بر اساس نتایج اندازه‌گیری فعالیت، در حالی‌که فتوپروتئین وحشی در شروع واکنش سرعت عمل بیشتر داشته و ثابت سرعت بالاتری دارد، فتوپروتئین جهش‌یافته به طور معناداری بازدهی بالاتری به اندازه تقریبا دو برابر در فوتون‌های نشری نشان داد. اندازه‌گیری فلوئورسانس ذاتی نشان داد که محیط اطراف کروموفورها در فتوپروتئین جهش‌یافته دچار تغییراتی شده و منجر به فاصله گرفتن عوامل فرونشان از آن‌ها شده است. با این‌حال، بر اساس طیف‌های فلوئورسانس مبتنی بر ANS، ساختار کلی پروتئین جهش‌یافته از فشردگی بیشتری برخوردار است. بر اساس آزمایش‌های واسرشتگی حرارتی، اگرچه دمای ذوب (Tm) بی‌تغییر باقی مانده است، با این‌وجود، تغییر آنتالپی فرآیند واسرشتگی در فتوپروتئین جهش‌یافته به طور معناداری افزایش یافته است که نشان‌دهنده افزایش پدیده متعاون بودن در میانکنش‌های پایدار‌کننده است. سرانجام، چنین نتیجه‌گیری شد که افزایش متعاون‌شدگی بین میانکنش‌های پایدار‌کننده در فتوپروتئین جهش‌یافته، ساختار طبیعی پروتئین را پایدارتر کرده و منجر به افزایش جمعیت کمپلکس‌های عملکردی و در نتیجه افزایش بازدهی در فوتون‌های نشری می‌شود.

کلیدواژه‌ها

موضوعات


1. Wilson, T., and Hastings, J. W. (1998) Bioluminescence. Annu. Rev. Cell Dev. Biol. 14, 197–230
2. Haddock, S. H. D., Moline, M. A., and Case, J. F. (2010) Bioluminescence in the sea. Ann. Rev. Mar. Sci. 2, 443–93
3. Hosseinkhani, S. (2011) Molecular enigma of multicolor bioluminescence of firefly luciferase. Cell. Mol. Life Sci. 68, 1167–1182
4. Khalifeh, K., Ranjbar, B., Alipour, B. S. B. S., and Hosseinkhani, S. (2011) The effect of surface charge balance on thermodynamic stability and kinetics of refolding of firefly luciferase. BMB Rep. 44, 102–106
5. Hakiminia, F., Molakarimi, M., Khalifeh, K., Jahani, Z., Sajedi, R. H., and Ranjbar, B. (2016) Adjustment of local conformational flexibility and accessible surface area alterations of Serine128 and Valine183 in mnemiopsin. J. Mol. Struct. 1117, 287–292
6. Hakiminia, F., Khalifeh, K., Sajedi, R. H., and Ranjbar, B. (2016) Determination of structural elements on the folding reaction of mnemiopsin by spectroscopic techniques. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 158, 49–55
7. حکیمی‌نیا, ف., خلیفه, خ., حسن‌ساجدی, ر., رنجبر, ب. (1397) تاثیر جایگزینی اسیدآمینه آرژینین ۳۹ با لیزین روی واسرشتگی گرمایی فتوپروتئین نمیوپسین 1. مجله زیست‌فناوری مدرس. 9, 1–7
8. جهانی, ز., ملاکریمی, م., حسن‌ساجدی, ر., تقدیر, م., حسینخانی, س .,اصغری, س. م. (1393) بررسی نقش برخی از آمینواسیدهای حفره اتصال کلنترازین در فتوپروتئین نمیوپسین در مقایسه با فتوپروتئینهای کیسه‌تنان. مجله زیست‌فناوری مدرس. 5, 1–13
9. Eremeeva, E. V., and Vysotski, E. S. (2019) Exploring Bioluminescence Function of the Ca2+-regulated Photoproteins with Site-directed Mutagenesis. Photochem. Photobiol. 10.1111/php.12945
10. Ohmiya, Y., and Hirano, T. (1996) Shining the light: The mechanism of the bioluminescence reaction of calcium-binding photoproteins. Chem. Biol. 10.1016/S1074-5521(96)90116-7
11. HASTINGS, J. W., Mitchell, G., Mattingly, P. H., Blinks, J. R., and Leeuven, M. Van (1969) Response of Aequorin Bioluminescence To Rapid Changes in Calcium Concentration. Nature. 222, 1047–1050
12. Daunert, S., and Deo, S. K. (2006) Photoproteins in Bioanalysis. Photoproteins Bioanal. 10.1002/3527609148
13. Roda, A., Guardigli, M., Michelini, E., and Mirasoli, M. (2009) Bioluminescence in analytical chemistry and in vivo imaging. TrAC - Trends Anal. Chem. 28, 307–322
14. Frank, L. A., Borisova, V. V., Markova, S. V., Malikova, N. P., Stepanyuk, G. A., and Vysotski, E. S. (2008) Violet and greenish photoprotein obelin mutants for reporter applications in dual-color assay. Anal. Bioanal. Chem. 391, 2223–2225
15. Hematyar, M., Jafarian, V., and Shirdel, A. (2022) Longer characteristic wavelength in a novel engineered photoprotein Mnemiopsin 2. Photochem. Photobiol. Sci. 21, 1031–1040
16. Jafarian, V., Sariri, R., Hosseinkhani, S., Aghamaali, M. R., Sajedi, R. H., Taghdir, M., and Hassannia, S. (2011) A unique EF-hand motif in mnemiopsin photoprotein from Mnemiopsis leidyi: Implication for its low calcium sensitivity. Biochem. Biophys. Res. Commun. 413, 164–170
17. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410
18. Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y. M., Buso, N., and Lopez, R. (2015) The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 43, W580–W584
19. Gouet, P., Courcelle, E., Stuart, D. I., and Métoz, F. (1999) ESPript: Analysis of multiple sequence alignments in PostScript. Bioinformatics. 15, 305–308
20. Webb, B., and Sali, A. (2016) Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinforma. 10.1002/cpbi.3
21. Fiser, A., and Šali, A. (2003) MODELLER: Generation and Refinement of Homology-Based Protein Structure Models. Methods Enzymol. 374, 461–491
22. Shen, M.-Y., and Sali, A. (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–24
23. Head, J. F., Inouye, S., Teranishi, K., and Shimomura, O. (2000) The crystal structure of the photoprotein aequorin at 2.3 Å resolution. Nature. 405, 372–376
24. Stepanyuk, G. A., Liu, Z. J., Burakova, L. P., Lee, J., Rose, J., Vysotski, E. S., and Wang, B. C. (2013) Spatial structure of the novel light-sensitive photoprotein berovin from the ctenophore Beroe abyssicola in the Ca2 +-loaded apoprotein conformation state. Biochim. Biophys. Acta - Proteins Proteomics. 1834, 2139–2146
25. Burakova, L. P., Natashin, P. V., Malikova, N. P., Niu, F., Pu, M., Vysotski, E. S., and Liu, Z. J. (2016) All Ca2+-binding loops of light-sensitive ctenophore photoprotein berovin bind magnesium ions: The spatial structure of Mg2 +-loaded apo-berovin. J. Photochem. Photobiol. B Biol. 154, 57–66
26. Meng, E. C., Pettersen, E. F., Couch, G. S., Huang, C. C., and Ferrin, T. E. (2006) Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics. 7, 339
27. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612
28. Shirdel, S. A., and Khalifeh, K. (2019) Thermodynamics of protein folding: methodology, data analysis and interpretation of data. Eur. Biophys. J. 48, 305–316
29. Mohammadi Ghanbarlou, R., Shirdel, S. A., Jafarian, V., and Khalifeh, K. (2018) Molecular mechanisms governing the evolutionary conservation of Glycine in the 6th position of loops ΙΙΙ and ΙV in photoprotein mnemiopsin 2. J. Photochem. Photobiol. B Biol. 10.1016/j.jphotobiol.2018.08.002
30. Vafa, M., Khalifeh, K., and Jafarian, V. (2018) Negative net charge of EF-hand loop I can affect both calcium sensitivity and substrate binding pattern in mnemiopsin 2. Photochem. Photobiol. Sci. 17, 807–814