Volume 10, Issue 1 (2019)                   JMBS 2019, 10(1): 69-75 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rasti B, Shahangian S. In-silico Analysis of Chemical Space Governing the Interactions between Distamycin A Derivatives and DNA Molecule. JMBS 2019; 10 (1) :69-75
URL: http://biot.modares.ac.ir/article-22-13366-en.html
1- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Iran, Lahijan Branch, Islamic Azad University (IAU), Shaghayegh Street, Lahijan, Guilan Iran. Postal Code: 4416939515 , rasti@liau.ac.ir
2- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
Abstract:   (7811 Views)
Aims: Targeting DNA lies at the heart of anti-cancer therapies. Hence, DNA-binding drugs and their interaction with DNA have recently drawn the attention of researchers. Since DNA minor groove binders (MGBs) act as potent anti-tumor agents, there is a need to have detailed insights on how they interact with DNA. The mechanism of action of the majority of MGBs is not well studied at the molecular level.
Materials and Methods: Herein, molecular docking and dynamics simulations were performed, using AutoDock Vina and NAMD softwares, respectively, to evaluate the binding of A derivatives (Tallimustine, PNU 151807, and ) to , and to compare their interaction energy and binding patterns.
Findings: All three drugs were stably bound throughout the simulation, causing only minor modifications to the structure of DNA. Results of interaction energy analyses together with LigPlot outcomes showed that A/T residues are responsible for making the majority of non-bonding interactions in the case of all three drugs, showing a good agreement with previously reported findings on MGBs.
Conclusion: A/T residues are responsible for making the majority of non-bonding interactions in the case of all three drugs, showing a good agreement with previously reported findings on MGBs. Furthermore, our studies have shown that to the other members of the Distamycin A family, makes stronger interactions with , making it a better candidate for cancer therapy goals.
Full-Text [PDF 670 kb]   (4673 Downloads)    
Article Type: Original Manuscript | Subject: Agricultural Biotechnology
Received: 2017/01/1 | Accepted: 2018/02/21 | Published: 2019/03/16

References
1. Mišković K, Bujak M, Baus Lončar M, Glavaš-Obrovac L. Antineoplastic DNA-binding compounds: Intercalating and minor groove binding drugs. Arch Ind Hyg Toxicol. 2013;64(4):593-602. [Link] [DOI:10.2478/10004-1254-64-2013-2371]
2. Sharma NK, Ameta RK, Singh M. Synthesis, characterization, anticancer, DNA binding and antioxidant studies of benzylamine supported Pd (II) complex. J Cancer Sci Res. 2016;1(1):1000101. [Link]
3. Fornander LH, Wu L, Billeter M, Lincoln P, Nordén B. Minor-groove binding drugs: Where is the second Hoechst 33258 molecule?. J Phys Chem B. 2013;117(19):5820-30. [Link] [DOI:10.1021/jp400418w]
4. Khan GSh, Shah A, Zia-ur-Rehman, Barker D. Chemistry of DNA minor groove binding agents. J Photochem Photobiol B. 2012;115:105-18. [Link] [DOI:10.1016/j.jphotobiol.2012.07.003]
5. Ali A, Bhattacharya S. DNA binders in clinical trials and chemotherapy. Bioorg Med Chem. 2014;22(16):4506-21. [Link] [DOI:10.1016/j.bmc.2014.05.030]
6. Srivastava HK, Chourasia M, Kumar D, Sastry GN. Comparison of computational methods to model DNA minor groove binders. J Chem Inf Model. 2011;51(3):558-71. [Link] [DOI:10.1021/ci100474n]
7. Baraldi PG, Bovero A, Fruttarolo F, Preti D, Aghazadeh Tabrizi M, Pavani MG, et al. DNA minor groove binders as potential antitumor and antimicrobial agents. Med Res Rev. 2004;24(4):475-528. [Link] [DOI:10.1002/med.20000]
8. Neidle S. DNA minor-groove recognition by small molecules. Nat Prod Rep. 2001;18(3):291-309. [Link] [DOI:10.1039/a705982e]
9. Koonammackal MV, Nellipparambil UV, Sudarsanakumar C. Molecular dynamics simulations and binding free energy analysis of DNA minor groove complexes of curcumin. J Mol Model. 2011;17(11):2805-16. [Link] [DOI:10.1007/s00894-011-0954-2]
10. Marchini S, Broggini M, Sessa C, D'Incalci M. Development of distamycin-related DNA binding anticancer drugs. Expert Opin Investig Drugs. 2001;10(9):1703-14. [Link] [DOI:10.1517/13543784.10.9.1703]
11. Danuta D. New solid phase synthesis of distamycin analogues. Molecules. 2011;16(4):3066-76. [Link] [DOI:10.3390/molecules16043066]
12. Chapman BJ. Advances in DNA sequence-specific agents. 4th Volume. Amesterdam: Elsevier; 2002. [Link]
13. Cai X, Gray PJ Jr, Von Hoff DD. DNA minor groove binders: Back in the groove. Cancer Treat Rev. 2009;35(5):437-50. [Link] [DOI:10.1016/j.ctrv.2009.02.004]
14. Geroni C, Marchini S, Cozzi P, Galliera E, Ragg E, Colombo T, et al. Brostallicin, a novel anticancer agent whose activity is enhanced upon binding to glutathione. Cancer Res. 2002;62(8):2332-6. [Link]
15. Weber GF. Molecular therapies of cancer. Basel: Springer International Publishing; 2015. [Link] [DOI:10.1007/978-3-319-13278-5]
16. Ten Tije AJ, Verweij J, Sparreboom A, Van Der Gaast A, Fowst C, Fiorentini F, et al. Phase I and pharmacokinetic study of brostallicin (PNU-166196), a new DNA minor-groove binder, administered intravenously every 3 weeks to adult patients with metastatic cancer. Clin Cancer Res. 2003;9(8):2957-64. [Link]
17. Lorusso D, Mainenti S, Pietragalla A, Ferrandina G, Foco G, Masciullo V, et al. Brostallicin (PNU-166196), a new minor groove DNA binder: Preclinical and clinical activity. Expert Opin Investig Drugs. 2009;18(12):1939-46. [Link] [DOI:10.1517/13543780903401284]
18. Sirajuddin M, Ali S, Badshah A. Drug-DNA interactions and their study by UV-visible, fluorescence spectroscopies and cyclic voltammetry. J Photochem Photobiol B. 2013;124:1-19. [Link] [DOI:10.1016/j.jphotobiol.2013.03.013]
19. Trott O, Olson AJ. AutoDock/Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31(2):455-61. [Link]
20. Fletcher R, Powell MJD. A rapidly convergent descent method for minimization. Comput J. 1963;6(2):163-8. [Link] [DOI:10.1093/comjnl/6.2.163]
21. Humphrey W, Dalke A, Schulten K. VMD: Visual Molecular Dynamics. J Mol Graph. 1996;14(1):33-8. [Link] [DOI:10.1016/0263-7855(96)00018-5]
22. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys.1983;79(2):926. [Link] [DOI:10.1063/1.445869]
23. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781-802. [Link] [DOI:10.1002/jcc.20289]
24. Mac Kerell AD Jr, Banavali N, Foloppe N. Development and current status of the CHARMM force field for nucleic acids. Biopolymers. 2000-2001;56(4):257-65. https://doi.org/10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W [Link] [DOI:10.1002/1097-0282(2000)56:43.0.CO;2-W]
25. Ryckaert JP, Ciccotti G, C Berendsen HJ. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J Comput Phys. 1977;23(3):327-41. [Link] [DOI:10.1016/0021-9991(77)90098-5]
26. Miyamoto Sh, Kollman PA. Settle: An analytical version of the Shake and Rattle algorithm for rigid water models. J Comput Chem. 1992;13(8):952-62. [Link] [DOI:10.1002/jcc.540130805]
27. Darden T, York D, Pedersen L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089. [Link] [DOI:10.1063/1.464397]
28. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8(2):127-34. [Link] [DOI:10.1093/protein/8.2.127]
29. Baraldi PG, Aghazadeh Tabrizi M, Preti D, Fruttarolo F, Avitabile B, Bovero A, et al. DNA minor-groove binders. Design, synthesis and biological evaluation of ligands structurally related to CC-1065, distamycin, and anthramycin. Pure Appl Chem. 2003;75(2-3):187-94. [Link] [DOI:10.1351/pac200375020187]
30. Durrant JD, Mc Cammon JA. Molecular dynamics simulations and drug discovery. BMC Biol. 2011;9:71. [Link] [DOI:10.1186/1741-7007-9-71]
31. Mishra R, Gaur AS, Chandra R, Kumar D. Molecular docking and molecular dynamics study of DNA minor groove binders. Int J Pharm Chem Anal. 2015;2(4):161-9. [Link]
32. Palchaudhuri R, Hergenrother PJ. DNA as a target for anticancer compounds: Methods to determine the mode of binding and the mechanism of action. Curr Opin Biotechnol. 2007;18(6):497-503. [Link] [DOI:10.1016/j.copbio.2007.09.006]
33. Lauria A, Montalbano A, Barraja P, Dattolo G, Almerico AM. DNA minor groove binders: An overview on molecular modelling and QSAR approaches. Curr Med Chem. 2007;14(20):2136-60. [Link] [DOI:10.2174/092986707781389673]
34. Fedier A, Fowst C, Tursi J, Geroni C, Haller U, Marchini S, et al. Brostallicin (PNU-166196) -- a new DNA minor groove binder that retains sensitivity in DNA mismatch repair-deficient tumour cells. Br J Cancer. 2003;89(8):1559-65. [Link] [DOI:10.1038/sj.bjc.6601316]
35. Marchini S, Cirò M, Gallinari F, Geroni C, Cozzi P, D'Incalci M, et al. Alpha-bromoacryloyl derivative of distamycin A (PNU 151807): A new non-covalent minor groove DNA binder with antineoplastic activity. Br J Cancer. 1999;80(7):991-7. [Link] [DOI:10.1038/sj.bjc.6690453]
36. Kok RJ, Schraa AJ, Bos EJ, Moorlag HE, Ásgeirsdóttir SA, Everts M, et al. Preparation and functional evaluation of RGD-modified proteins as αvβ3 integrin directed therapeutics. Bioconjug Chem. 2002;13(1):128-35. [Link] [DOI:10.1021/bc015561+]
37. Mendes RE, Tsakris A, Sader HS, Jones RN, Biek D, Mc Ghee P, et al. Characterization of methicillin-resistant Staphylococcus aureus displaying increased MICs of ceftaroline. J Antimicrob Chemother. 2012;67(6):1321-4 [Link] [DOI:10.1093/jac/dks069]
38. Bruce CD, Ferrara MM, Manka JL, Davis ZS, Register J. Dynamic hydrogen bonding and DNA flexibility in minor groove binders: Molecular dynamics simulation of the polyamide f-ImPyIm bound to the Mlu1 (MCB) sequence 5'-ACGCGT-3' in 2:1 motif. J Mol Recognit. 2015;28(5):325-37. [Link] [DOI:10.1002/jmr.2448]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.