Volume 9, Issue 2 (2018)                   JMBS 2018, 9(2): 207-212 | Back to browse issues page

XML Persian Abstract Print


1- Biology Department, Abhar Branch, Payam-e-Noor University, Tehran, Iran, Payam-e-Noor University, Daneshgah Boulevard, Abhar, Zanjan. Postal Code: 4561934365
2- Microbioloy Department, Biology Faculty, Alzahra University, Iran
Abstract:   (7299 Views)
Aims: Adaptation of native bacterial strains in every climate is considerable. Evaluation of native thermotolerant acetic acid bacteria effectively influence their optimal and beneficial use. The aim of this study was to evaluate the characteristics of productive thermotolerant acetic acid bacteria with focusing on Acetobacter sp. A10.
Materials and Methods: In the present experimental study, the native thermotolerant strain of Acetobacter sp. A10 was used. For preparation of fresh culture and maintenance of thermotolerant strain glucose yeast extract calcium carbonate was used, which contained 50g glucose, 10g yeast extract, 30g calcium carbonate, and 25g agar per liter. In order to produce acetic acid by the strain of Acetobacter sp. A10, ethanol yeast extract broth culture was used. Effect of initial concentrations of ethanol and acetic acid on the production of acetic acid by Acetobacter sp. A10 was investigated, using a culture meda containing 2% to 9% ethanol and 2% to 9% acetic acid.
Findings: This strain could produce 40g/l acetic acid from 4% (WV) ethanol in baffled shake-flasks in 24h under optimized conditions of pH 4, at 33°C, and 150rpm. The strain at 37 °C was able to produce acetic acid in the presence of a 4% and 8% initial concentration of acetic acid a. The rate of fermentation was 2.5 times more than mesophilic ones.
Conclusion: Acetobacter sp. A10 is active in a different temperature range compared to mesophilic strains and it is able to withstand ethanol and acetic acid to more concentrations. In addition, it has higher efficiency, as well as greater rate and power of fermentation.
Full-Text [PDF 440 kb]   (2810 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2016/08/5 | Accepted: 2018/03/15 | Published: 2018/06/21

References
1. Garrity G, Berner DJ, Krieg NR, Staley JT, editors. Bergy's manual of systematic bacteriology, part C. 2nd Volume. New York City: Springer US; 2005. pp: 41-95. [Link]
2. Saeki A, Theeragool G, Matsushita K, Toyama H, Lotong N, Adachi O. Development of thermotolerant acetic acid baeteria useful for vinegar fermentation at higher temperatures. Biosci Biotechnol Biochem. 1997;61(1):138-45. [Link] [DOI:10.1271/bbb.61.138]
3. Kanchanarach W, Theeragool G, Yakushi T, Toyama H, Adachi O, Matsushita K. Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases. Appl Microbiol Biotechnol. 2010;85(3):741-51. [Link] [DOI:10.1007/s00253-009-2203-5]
4. Saichana I, Moonmangmee D, Adachi O, Matsushita K, Toyama H. Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and distruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase. Appl Environ Microbiol. 2009;75(13):4240-7. [Link] [DOI:10.1128/AEM.00640-09]
5. Hattori H, Yakushi T, Matsutani M, Moonmangmee D, Toyama H, Adachi O, et al. High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher temperature. Appl Microbiol Biotechnol. 2012;95(6):1531-40. [Link] [DOI:10.1007/s00253-012-4005-4]
6. Moonmangmee D, Adachi O, Ano Y, Shinagawa E, Toyama H, Theeragool G, et al. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Biosci Biotechnol Biochem. 2000;64(11):2306-15. [Link] [DOI:10.1271/bbb.64.2306]
7. Adachi O, Moonmangmee D, Toyama H, Yamada M, Shinagawa E, Matsushitak K. New developments in oxidative fermentation. Appl Microbiol Biotechnol. 2003;60(6):643-53. [Link] [DOI:10.1007/s00253-002-1155-9]
8. Adachi O, Yakushi T. Membrane-bound dehydrogenases of acetic acid bacteria. In: Matsushita K, Toyama H, Tonouchi N, Okamoto-Kainuma A, editors. Acetic acid bacteria: Ecology and physiology. Tokyo: Springer Japan; 2016. pp. 273-97. [Link]
9. Matsushita K, Toyama H, Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol.1994;36:247–301. [Link] [DOI:10.1016/S0065-2911(08)60181-2]
10. Yakushi T, Matsushita K. Alcohol dehydrogenase of acetic acid bacteria: Structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol. 2010;86(5):1257-65. [Link] [DOI:10.1007/s00253-010-2529-z]
11. Adachi O, Miagawa E, Shinagawa E, Matsushita K, Ameyama M. Purification and properties of particular alcohol dehdrogenas from Acetobacter aceti. Agric Biol Chem. 1978;42(12):2331-40. https://doi.org/10.1271/bbb1961.42.2331 [Link] [DOI:10.1080/00021369.1978.10863357]
12. Matsushita K, Yakushi T, Takaki Y, Toyama H, Adachi O. Generation mechanism and purification of an inactive form convertible in vivo to the active form of quinoprotein alcohol dehydrogenas in Gluconobacter suboxydans. J Bacteriol. 1995;177(22):6552-9. [Link] [DOI:10.1128/jb.177.22.6552-6559.1995]
13. Moghadamy F, Souodi MR, Rezvaniyan Zadeh MR, Shayesteh S. Isolation of acetic acid producing bacteria from domestic vinegar and assessment of their thermal stability. J Sci Univ Tehran. 2004;30(3):541-9. [Persian] 18- Gupta A, Singh VK, Qazi GN, Kumar A. Gluconobacter oxydans: its biotechnological applications. J Mol Microbiol Biotechnol. 2001;3(3):445-56. [Link]
14. De Ory I, Romero LE, Cantero D. Modeling the kinetics of growth of Acetobacter aceti in discontinuous culture: Influence of the temperature of operation. Appl Microbiol Biotechnol. 1998;49(2):189-93. [Link] [DOI:10.1007/s002530051157]
15. Adachi O, Tayama K, Shinagawa E, Matsushita K, Ameyama M. Purification and characterization of particulate alcohol dehydrogenase from Geluconobacter suboxydans. Agric Biol Chem. 1978;42(11):2045-56. https://doi.org/10.1080/00021369.1978.10863306 [Link] [DOI:10.1271/bbb1961.42.2045]
16. Tamaki N, Nakamura M, Kimura K, Hama T. Purification and properties of aldehyde dehydrogenase from Saccharomyces cerevisiae. J Biochem. 1977;82(1):73-9. [Link] [DOI:10.1093/oxfordjournals.jbchem.a131694]
17. Trcek J, Toyama H, Czuba J, Misiewicz A, Matsushita K. Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl Microbiol Biotechnol. 2006;70(3):366-73. [Link] [DOI:10.1007/s00253-005-0073-z]
18. Adachi O, Hours RA, Shinagawa E, Akakabe Y, Yakushi T, Matsushita K. Enzymatic synthesis of 4-pentulosonate (4-keto-D-pentonate) from D-aldopentose and D-pentonate by two different pathways using membrane enzymes of acetic acid bacteria. Biosci Biotechnol Biochem. 2011;75(12):2418-20. [Link] [DOI:10.1271/bbb.110575]
19. Adachi O, Hours RA, Shinagawa E, Akakabe Y, Yakushi T, Matsushita K. Enzymatic synthesis of 4-pentulosonate (4-keto-D-pentonate) from D-aldopentose and D-pentonate by two different pathways using membrane enzymes of acetic acid bacteria. Biosci Biotechnol Biochem. 2011;75(12):2418-20. [Link] [DOI:10.1271/bbb.110575]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.