Volume 9, Issue 4 (2018)                   JMBS 2018, 9(4): 621-626 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zafari J, Javani Jouni F, Satari keykaleh M, Abdolmaleki P, Khodayar M, Jalali A. Toxicity of Cisplatin under the Influence of Static Magnetic Field in Susceptible and Drug-Resistant Cells. JMBS 2018; 9 (4) :621-626
URL: http://biot.modares.ac.ir/article-22-13684-en.html
1- “Toxicology Research Center” and “Toxicology Department, Pharmacy Faculty”, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2- Microbiology Department, Biological Sciences Faculty, Tehran North Branch, Islamic Azad University, Tehran, Iran
3- Biology Department, Sciences Faculty, Malayer University, Hamedan, Iran
4- Biophysics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
5- Toxicology Department, Pharmacy Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
6- “Toxicology Research Center” and “Toxicology Department, Pharmacy Faculty”, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Pharmacy Faculty, Ahvaz Jundishapur University of Medical Sciences, Golestan Boulevard, Ahvaz, Iran. Postal Code: 6135733184 , amjalali@hotmail.com
Abstract:   (3556 Views)
Aims: Regarding the treatment of cancer, due to the limitation in the use of high dose and resistance of cancer cells, it is necessary to use optimal methods that have high therapeutic efficacy and reduce the dose of radiation and medicine. The aim of the present research was to investigate toxicity of cisplatin under the influence of static magnetic field in susceptible and drug-resistant cell.
Materials and Methods: In the present experimental study, A2780-CP resistant cell classes and susceptible to A2780 cisplatin were investigated in the field and drug-treated cell groups compared to the drug-receiving group alone, and to determine the effect of static magnetic field and concentration of drug, 10mT for 24 hours and logarithmic drug concentration (1, 10, 50, 100, and 500mcg/ml) were used. Inhibitory concentration of 50% cell growth (IC50) was obtained for the cells in the absence and presence of the magnetic field after conversion of the absorption obtained in the ELISA from the MTT test to cytotoxicity percentage. Data were analyzed with Prism software using two-way ANOVA and T-test.
Findings: In the presence of a static magnetic field and different drug concentrations, a greater reduction in the percentage of In vivo cells was observed. IC50 values for A2780 cells in the absence and presence of magnetic fields were 27.69±9.58 and 8.96±1.48μg/ml for A2780-CP, and 61.61±8.03 and 9.58±3.13μg/ml, respectively.
Conclusion: The mortality rate of the cells treated with cisplatin under the influence of the magnetic field is more in susceptible and drug-resistant cells than that of only drug use. Drug-resistance decreases in the drug-resistant cell class in the presence of a magnetic field.
Full-Text [PDF 504 kb]   (1623 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2016/09/21 | Accepted: 2018/02/9 | Published: 2018/12/21

1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10-29. [Link] [DOI:10.3322/caac.20138]
2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11-30. [Link] [DOI:10.3322/caac.21166]
3. Tatarov I, Panda A, Petkov D, Kolappaswamy K, Thompson K, Kavirayani A, et al. Effect of magnetic fields on tumor growth and viability. Comp Med. 2011;61(4):339-45. [Link]
4. Ozols RF, editor. Drug resistance in cancer therapy. Heidelberg: Springer Science & Business Media; 2012. [Link]
5. Liu FS. Mechanisms of chemotherapeutic drug resistance in cancer therapy--a quick review. Taiwan J Obstet Gynecol. 2009;48(3):239-44. [Link] [DOI:10.1016/S1028-4559(09)60296-5]
6. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53:615-27. [Link] [DOI:10.1146/annurev.med.53.082901.103929]
7. Herman TS, Teicher BA, Jochelson M, Clark J, Svensson G, Coleman CN. Rationale for use of local hyperthermia with radiation therapy and selected anticancer drugs in locally advanced human malignancies. Int J Hyperthermia. 1988;4(2):143-58. [Link] [DOI:10.3109/02656738809029305]
8. Belka C, Jendrossek V, Pruschy M, Vink S, Verheij M, Budach W. Apoptosis-modulating agents in combination with radiotherapy-current status and outlook. Int J Radiat Oncol Biol Phys. 2004;58(2):542-54. [Link] [DOI:10.1016/j.ijrobp.2003.09.067]
9. Siegel R, De Santis C, Virgo K, Stein K, Mariotto A, Smith T, et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin. 2012;62(4):220-41. [Link] [DOI:10.3322/caac.21149]
10. Brix G, Strieth S, Strelczyk D, Dellian M, Griebel J, Eichhorn ME, et al. Static magnetic fields affect capillary flow of red blood cells in striated skin muscle. Microcirculation. 2008;15(1):15-26. [Link] [DOI:10.1080/10739680701410850]
11. Rosen AD. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys. 2003;39(2):163-73. [Link] [DOI:10.1385/CBB:39:2:163]
12. Chionna A, Tenuzzo B, Panzarini E, Dwikat MB, Abbro L, Dini L. Time dependent modifications of Hep G2 cells during exposure to static magnetic fields. Bioelectromagnetics. 2005;26(4):275-86. [Link] [DOI:10.1002/bem.20081]
13. Feng SW, Lo YJ, Chang WJ, Lin CT, Lee SY, Abiko Y, et al. Static magnetic field exposure promotes differentiation of osteoblastic cells grown on the surface of a poly-L-lactide substrate. Med Biol Eng Comput. 2010;48(8):793-8. [Link] [DOI:10.1007/s11517-010-0639-5]
14. Hsu SH, Chang JC. The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells. Cytotechnology. 2010;62(2):143-55. [Link] [DOI:10.1007/s10616-010-9271-3]
15. Martino CF, Perea H, Hopfner U, Ferguson VL, Wintermantel E. Effects of weak static magnetic fields on endothelial cells. Bioelectromagnetics. 2010;31(4):296-301. [Link] [DOI:10.1002/bem.20565]
16. Raylman RR, Clavo AC, Wahl RL. Exposure to strong static magnetic field slows the growth of human cancer cells in vitro. Bioelectromagnetics. 1996;17(5):358-63. https://doi.org/10.1002/(SICI)1521-186X(1996)17:5<358::AID-BEM2>3.0.CO;2-2 [Link] [DOI:10.1002/(SICI)1521-186X(1996)17:53.0.CO;2-2]
17. Strelczyk D, Eichhorn ME, Luedemann S, Brix G, Dellian M, Berghaus A, et al. Static magnetic fields impair angiogenesis and growth of solid tumors in vivo. Cancer Biol Ther. 2009;8(18):1756-62. [Link] [DOI:10.4161/cbt.8.18.9294]
18. Strieth S, Strelczyk D, Eichhorn ME, Dellian M, Luedemann S, Griebel J, et al. Static magnetic fields induce blood flow decrease and platelet adherence in tumor microvessels. Cancer Biol Ther. 2008;7(6):814-9. [Link] [DOI:10.4161/cbt.7.6.5837]
19. Yang JC, Lee SY, Chen CA, Lin CT, Chen CC, Huang HM. The role of the calmodulin‐dependent pathway in static magnetic field‐induced mechanotransduction. Bioelectromagnetics. 2010;31(4):255-61. [Link]
20. Zafari J, Javani Jouni F, Abdolmaleki P, Jalali A, Khodayar MJ. Investigation on the effect of static magnetic field up to 30 mT on viability percent, proliferation rate and IC50 of HeLa and fibroblast cells. Electromagn Biol Med. 2015;34(3):216-20. [Link] [DOI:10.3109/15368378.2015.1076452]
21. Ghodbane S, Lahbib A, Sakly M, Abdelmelek H. Bioeffects of static magnetic fields: Oxidative stress, genotoxic effects, and cancer studies. Biomed Res Int. 2013;2013:602987. [Link] [DOI:10.1155/2013/602987]
22. Liu Y, Qi H, Sun RG, Chen WF. An investigation into the combined effect of static magnetic fields and different anticancer drugs on K562 cell membranes. Tumori. 2011;97(3):386-92. [Link] [DOI:10.1177/030089161109700322]
23. Sahebjamei H, Abdolmaleki P, Ghanati F. Effects of magnetic field on the antioxidant enzyme activities of suspension‐cultured tobacco cells. Bioelectromagnetics. 2007;28(1):42-7. [Link] [DOI:10.1002/bem.20262]
24. Ju ST, Cui H, Panka DJ, Ettinger R, Marshak-Rothstein A. Participation of target Fas protein in apoptosis pathway induced by CD4+ Th1 and CD8+ cytotoxic T cells. Proc Natl Acad Sci U S A. 1994;91(10):4185-9. [Link] [DOI:10.1073/pnas.91.10.4185]
25. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85-95. [Link] [DOI:10.1038/nrc2981]
26. Torti SV, Torti FM. Iron and cancer: More ore to be mined. Nat Rev Cancer. 2013;13(5):342-55. [Link] [DOI:10.1038/nrc3495]
27. Dreher D, Junod AF. Role of oxygen free radicals in cancer development. Eur J Cancer. 1996;32A(1):30-8. [Link] [DOI:10.1016/0959-8049(95)00531-5]
28. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1-40. [Link] [DOI:10.1016/j.cbi.2005.12.009]
29. Mansour HH, Hafez HF, Fahmy NM. Silymarin modulates cisplatin-induced oxidative stress and hepatotoxicity in rats. J Biochem Mol Biol. 2006;39(6):656-61. [Link] [DOI:10.5483/BMBRep.2006.39.6.656]
30. Baek SM, Kwon CH, Kim JH, Woo JS, Jung JS, Kim YK. Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells. J Lab Clin Med. 2003;142(3):178-86. [Link] [DOI:10.1016/S0022-2143(03)00111-2]
31. Miyakoshi J. Effects of static magnetic fields at the cellular level. Prog Biophys Mol Biol. 2005;87(2-3):213-23. [Link] [DOI:10.1016/j.pbiomolbio.2004.08.008]
32. Tofani S, Barone D, Berardelli M, Berno E, Cintorino M, Foglia L, et al. Static and ELF magnetic fields enhance the in vivo anti-tumor efficacy of cis-platin against lewis lung carcinoma, but not of cyclophosphamide against B16 melanotic melanoma. Pharmacol Res. 2003;48(1):83-90. [Link] [DOI:10.1016/S1043-6618(03)00062-8]
33. Sabo J, Mirossay L, Horovcak L, Sarissky M, Mirossay A, Mojzis J. Effects of static magnetic field on human leukemic cell line HL-60. Bioelectrochemistry. 2002;56(1-2):227-31. [Link] [DOI:10.1016/S1567-5394(02)00027-0]
34. Bragado P, Armesilla A, Silva A, Porras A. Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis. 2007;12(9):1733-42. [Link] [DOI:10.1007/s10495-007-0082-8]
35. Dalianis T. Human papillomavirus and oropharyngeal cancer, the epidemics, and significance of additional clinical biomarkers for prediction of response to therapy (review). Int J Oncol. 2014;44(6):1799-805. [Link] [DOI:10.3892/ijo.2014.2355]
36. Krzemieniewski M, Debowski M, Dobrzynska A, Zielinski M. Chemical oxygen demand reduction of various wastewater types using magnetic field-assisted Fenton reaction. Water Environ Res. 2004;76(4):301-9. [Link] [DOI:10.2175/106143004X141889]
37. Hao XL, Zou LY, Zhang GS, Zhang YB. Magnetic field assisted Fenton reactions for the enhanced degradation of methyl blue. Chin Chem Lett. 2009;20(1):99-101. [Link] [DOI:10.1016/j.cclet.2008.09.058]
38. Toyokuni S. Role of iron in carcinogenesis: Cancer as a ferrotoxic disease. Cancer Sci. 2009;100(1):9-16. [Link] [DOI:10.1111/j.1349-7006.2008.01001.x]
39. Huang X. Iron overload and its association with cancer risk in humans: Evidence for iron as a carcinogenic metal. Mutat Res. 2003;533(1-2):153-71. [Link] [DOI:10.1016/j.mrfmmm.2003.08.023]
40. Satoh M, Kashihara N, Fujimoto S, Horike H, Tokura T, Namikoshi T, et al. A novel free radical scavenger, edarabone, protects against cisplatin-induced acute renal damage in vitro and in vivo. J Pharmacol Exp Ther. 2003;305(3):1183-90. [Link] [DOI:10.1124/jpet.102.047522]
41. Kim SJ, Park C, Han AL, Youn MJ, Lee JH, Kim Y, et al. Ebselen attenuates cisplatin-induced ROS generation through Nrf2 activation in auditory cells. Hear Res. 2009;251(1-2):70-82. [Link] [DOI:10.1016/j.heares.2009.03.003]
42. Scaiano JC. Exploratory laser flash photolysis study of free radical reactions and magnetic field effects in melatonin chemistry. J Pineal Res. 1995;19(4):189-95. [Link] [DOI:10.1111/j.1600-079X.1995.tb00188.x]
43. Kula B, Dró/.zd/.z M. A study on magnetic field effects on fibroblast cultures part 2, the evaluation of the effects of static and Extremely Low Frequency (ELF) magnetic fields on free-radical processes in fibroblast cultures. Bioelectrochem Bioenerg. 1996;39(1):27-30. [Link] [DOI:10.1016/0302-4598(95)01843-3]
44. Masuda H, Tanaka T, Takahama U. Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem Biophys Res Commun. 1994;203(2):1175-80. [Link] [DOI:10.1006/bbrc.1994.2306]
45. Ding GR, Nakahara T, Tian FR, Guo Y, Miyakoshi J. Transient suppression of X-ray-induced apoptosis by exposure to power frequency magnetic fields in MCF-7 cells. Biochem Biophys Res Commun. 2001;286(5):953-7. [Link] [DOI:10.1006/bbrc.2001.5501]
46. Köberle B, Tomicic MT, Usanova S, Kaina B. Cisplatin resistance: Preclinical findings and clinical implications. Biochim Biophys Acta. 2010;1806(2):172-82. [Link] [DOI:10.1016/j.bbcan.2010.07.004]
47. Holzer AK, Katano K, Klomp LW, Howell SB. Cisplatin rapidly down-regulates its own influx transporter hCTR1 in cultured human ovarian carcinoma cells. Clin Cancer Res. 2004;10(19):6744-9. [Link] [DOI:10.1158/1078-0432.CCR-04-0748]
48. Beretta GL, Gatti L, Tinelli S, Corna E, Colangelo D, Zunino F, et al. Cellular pharmacology of cisplatin in relation to the expression of human copper transporter CTR1 in different pairs of cisplatin-sensitive and -resistant cells. Biochem Pharmacol. 2004;68(2):283-91. [Link] [DOI:10.1016/j.bcp.2004.03.022]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.