Volume 9, Issue 1 (2018)                   JMBS 2018, 9(1): 39-45 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Badali ‎ N, Shokrollahzadeh S. Biodechlorination of Chlorinated Aliphatic Compounds ‎Trichloroethylene, Dichloromethane, and Dichloroethane in ‎Aqueous Solution, Using Aerobic Sphingopyxix ummariensis ‎Bacteria. JMBS. 2018; 9 (1) :39-45
URL: http://biot.modares.ac.ir/article-22-13907-en.html
1- Chemical Technologies Department, Iranian Research Organization for Science & Technology, Tehran, Iran
2- Chemical Technologies Department, Iranian Research Organization for Science & Technology, Tehran, Iran‎, Chemical Technologies Department, Iranian Research Organization for Science & Technology, Enqelab Street, Parsa ‎Square, Ahmadabad Mostoufi Road., Azadegan Highway, Tehran, Iran. Postal Code: 3353136846‎ , shokrollahzadeh@irost.ir
Abstract:   (7808 Views)
Aims: The chlorinated organic compounds are the most dangerous water pollutants in industrial sites. The aim of this study was to investigate the biodechlorination of chlorinated aliphatic compounds; trichloroethylene, dichloromethane, and 1,2- dichloroethane in aqueous solution, using aerobic Sphingopyxix ummariensis bacteria.
Materials & Methods: In this experimental study, aliphatic chlorinated compounds; diclormethan, trichlorethylene, and 1,2-dichloroethane with purity of 99.9% were used. A visible-ultraviolet spectroscopy was used to determine the cell growth from measuring the turbidity of the medium at 600nm. The amount of released chloride was measured by an Ion Selective Electrode (ISE). The live bacterial sample was inoculated into the Nutrient Broth medium and was incubated at 30°C and 150rpm for 24 hours.
Findings: The rate of dechlorination of diclormethan, trichlorethylene, and 1,2-dichloroethane by Sphingopyxis ummariensis were measured as 1.3, 1.05, and 0.63mg/l.h, respectively. The addition of glucose and yeast extract, as co-substrate, led to an increase in the cell growth and dechlorination rate up to 3.28, 1.67 and 0.90mg/l.h, respectively. During experiment, the highest dechlorination was measured at concentration of 2.5mM, at exponential growth phase.
Conclusion: Sphingopyxix ummariensis bacteria is capable of biodechlorination of chlorinated aliphatic compounds and can grows on trichloroethylene, dichloromethane, and 1,2-dichloroethane as a single carbon source and can decolorize them. This strain has the highest growth and removal efficiency in eliminating dichloromethane as the sole source of carbon along with glucose and yeast extract as co-substrate.
Full-Text [PDF 518 kb]   (1213 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2016/03/6 | Accepted: 2018/01/27 | Published: 2018/05/22

References
1. Shestakova M, Sillanpää M. Removal of dichloromethane from ground and wastewater: A review. ‎Chemosphere. 2013;93(7):1258-67.‎ [Link] [DOI:10.1016/j.chemosphere.2013.07.022]
2. Liu X, Vellanki BP, Batchelor B, Abdel-Wahab A. Degradation of 1, 2-dichloroethane with advanced ‎reduction processes (ARPs): Effects of process variables and mechanisms. Chem Eng J. 2014;237:300-7.‎ [Link] [DOI:10.1016/j.cej.2013.10.037]
3. Field J, Sierra-Alvarez R. Biodegradability of chlorinated solvents and related chlorinated aliphatic ‎compounds. Rev Environ Sci Bio. 2004;3:185-254.‎ [Link] [DOI:10.1007/s11157-004-4733-8]
4. Azadpour-Keeley A, Russell HH, Sewell GW. Record display for the EPA National Library Catalog. U.S. ‎washington DC: Environmental Protection Agency; 1999. Report no.:EPA/540-S-99-001.‎ [Link]
5. Amin MT, Hamid S, Alazba AA, Amin MN, Islam M, Manzoor U. Environmental dynamics and engineered ‎systems for the degradation of trichloroethylene: A critical review. Global NEST J. 2014;16(2):316-28.‎ [Link] [DOI:10.30955/gnj.001333]
6. Tsien HC, Brusseau GA, Hanson RS, Waclett LP. Biodegradation of trichloroethylene by Methylosinus ‎trichosporium OB3b. Appl Environ Microbiol. 1989;55(12):3155-61.‎ [Link]
7. Koh SC, Bowman JP, Sayler GS. Soluble methane monooxygenase production and trichloroethylene ‎degradation by a type I methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol. ‎‎1993;59(4):960-7.‎ [Link]
8. Kocamemi BA, Çeçen F. Biodegradation of 1, 2-dichloroethane (1,2-DCA) by cometabolism in a nitrifying ‎biofilm reactor. Int Biodeterior Biodegradation. 2009;63(6):717-26.‎ [Link] [DOI:10.1016/j.ibiod.2009.04.008]
9. Scheutz C, Durant ND, Broholm MM. Effects of bioaugmentation on enhanced reductive dechlorination of ‎‎1, 1, 1-trichloroethane in groundwater: A comparison of three sites. Biodegradation, 2014;25(3):459-78.‎ [Link] [DOI:10.1007/s10532-013-9674-x]
10. ‎10- Ottengraf SPP, Meesters JJP, Van Den Oever AHC, Rozema HR. Biological elimination of volatile xenobiotic ‎compounds in biofilters. Bioprocess Eng. 1986;1(2):61-9.‎ [Link] [DOI:10.1007/BF00387497]
11. Scholtz R, Wackett LP, Egli C, Cook AM, Leisinger T. Dichloromethane dehalogenase with improved ‎catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium. J Bacteriol. ‎‎1988;170(12):5698-704.‎ [Link] [DOI:10.1128/jb.170.12.5698-5704.1988]
12. Stucki G, Gälli R, Ebersold HR, Leisinger T. Dehalogenation of dichloromethane by cell extracts of ‎Hyphomicrobium DM2. Arch Microbiol. 1981;130(5):366-71.‎ [Link] [DOI:10.1007/BF00414602]
13. Chen DZ, Ouyang DJ, Liu HX, Chen J, Zhuang QF, Chen JM. Effective utilization of dichloromethane by a ‎newly isolated strain Methylobacterium rhodesianum H13. Environ Sci Pollut Res Int. 2014;21(2):1010-9.‎ [Link] [DOI:10.1007/s11356-013-1972-7]
14. Shokrollahzadeh S, Azizmohseni F, Golmohamad F. Characterization and kinetic Study of PAH–Degrading ‎Sphingopyxis ummariensis bacteria isolated from a petrochemical wastewater treatment plant. Adv Environ ‎Technol. 2015;1(1):1-9.‎ [Link]
15. Jindal S, Dua A, Lal R. Sphingopyxis indica sp. nov., isolated from a high dose point ‎hexachlorocyclohexane (HCH)-contaminated dumpsite. Int J Syst Evol Microbiol. 2013;63(Pt 6):2186-91.‎ [Link] [DOI:10.1099/ijs.0.040840-0]
16. Sharma P, Verma M, Bala K, Nigam A, Lal R. Sphingopyxis ummariensis sp. nov., isolated from a ‎hexachlorocyclohexane dump site. Int J Syst Evol Microbiol. 2010;60(Pt 4):780-4.‎ [Link]
17. Karn SK, Reddy MS. Degradation of 2, 4, 6-trichlorophenol by bacteria isolated from secondary sludge of ‎a pulp and paper mill. J Gen Appl Microbiol. 2012;58(6):413-20.‎ [Link] [DOI:10.2323/jgam.58.413]
18. Keith LH. Compilation of EPA's sampling and analysis methods. 2nd Edition. Boca Raton: CRC Press; 1996.‎ [Link]
19. Ryoo D, Shim H, Canada K, Barbieri P, Wood TK. Aerobic degradation of tetrachloroethylene by toluene-‎o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat Biotechnol. 2000;18(7):775-8.‎ [Link] [DOI:10.1038/77344]
20. Frascari D, Zanaroli G, Danko AS. In situ aerobic cometabolism of chlorinated solvents: A review. J Hazard ‎Mater. 2015;283:382-99.‎ [Link]
21. Tiehm A, Schmidt KR. Sequential anaerobic/aerobic biodegradation of chloroethenes--aspects of field ‎application. Curr Opin Biotechnol. 2011;22(3):415-21.‎ [Link] [DOI:10.1016/j.copbio.2011.02.003]
22. Alpaslan Kocamemi B, Çeçen F. Biodegradation of 1,2-dichloroethane (1,2-DCA) by cometabolism in a ‎nitrifying biofilm reactor. Int Biodeterior Biodegradation. 2009;63(6):717-26.‎ [Link] [DOI:10.1016/j.ibiod.2009.04.008]
23. Tartakovsky B, Manuel MF, Guiot SR. Trichloroethylene degradation in a coupled anaerobic/aerobic ‎reactor oxygenated using hydrogen peroxide. Environ Sci Technol. 2003;37(24):5823-8.‎ [Link] [DOI:10.1021/es030340v]
24. Davis GB, Patterson BM, Johnston CD. Aerobic bioremediation of 1, 2 dichloroethane and vinyl chloride at ‎field scale. J Contam Hydrol. 2009;107(1-2):91-100.‎ [Link] [DOI:10.1016/j.jconhyd.2009.04.004]
25. Chen WH, Yang WB, Yuan CS, Yang JC, Zhao QL. Fates of chlorinated volatile organic compounds in ‎aerobic biological treatment processes: The effects of aeration and sludge addition. Chemosphere. ‎‎2014;103:92-8.‎ [Link] [DOI:10.1016/j.chemosphere.2013.11.039]
26. Han YL, Kuo MC, Tseng IC, Lu CJ. Semicontinuous microcosm study of aerobic cometabolism of ‎trichloroethylene using toluene. J Hazard Mater. 2007;148(3):583-91.‎ [Link] [DOI:10.1016/j.jhazmat.2007.03.013]
27. Firsova J, Doronina N, Lang E, Spröer C, Vuilleumier S, Trotsenko Y. Ancylobacter dichloromethanicus sp. ‎nov.–a new aerobic facultatively methylotrophic bacterium utilizing dichloromethane. Syst Appl Microbiol. ‎‎2009;32(4):227-32.‎ [Link] [DOI:10.1016/j.syapm.2009.02.002]
28. van den Wijngaard AJ, Van der Kamp K, van der Ploeg J, Pries F, Kazemier B, Janssen DB. Degradation of ‎‎1, 2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs. Appl Environ Microbiol. ‎‎1992;58(3):976-83.‎ [Link]
29. Hage JC, Hartmans S. Monooxygenase-mediated 1, 2-dichloroethane degradation by Pseudomonas sp. ‎strain DCA1. Appl Environ Microbiol. 1999;65(6):2466-70.‎ [Link]
30. Yu Jm, Chen Jm, Wang Jd. Removal of dichloromethane from waste gases by a biotrickling filter. J Environ ‎Sci. 2006;18(6):1073-6.‎ [Link]
31. Miyake-Nakayama C, Masujima S, Ikatsu H, Miyoshi ShI, Shinoda S. Isolation and characterization of a ‎new dichloromethane degrading bacterium, Ralstonia metallidurans, PD11. Biocontrol Sci. 2004;9(4):89-93.‎ [Link] [DOI:10.4265/bio.9.89]
32. Wu SJ, Zhang LL, Wang JD, Chen JM. Bacillus circulans WZ-12-a newly discovered aerobic ‎dichloromethane-degrading methylotrophic bacterium. Appl Microbiol Biotechnol. 2007;76(6):1289-96.‎ [Link] [DOI:10.1007/s00253-007-1100-z]
33. Olaniran AO, Pillay D, Pillay B. Aerobic biodegradation of dichloroethenes by indigenous bacteria isolated ‎from contaminated sites in Africa. Chemosphere. 2008;73(1):24-9.‎ [Link] [DOI:10.1016/j.chemosphere.2008.06.003]
34. Wu S, Yu X, Hu Z, Zhang L, Chen J. Optimizing aerobic biodegradation of dichloromethane using response ‎surface methodology. J Environ Sci. 2009;21(9):1276-83.‎ [Link] [DOI:10.1016/S1001-0742(08)62415-8]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author