Volume 10, Issue 1 (2019)                   JMBS 2019, 10(1): 77-83 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Seyedi Z, Zahraei Z, Jookar Kashi F. Decolorization of Reactive Red 152 Dye by Native Bacteria Isolated from Kashan Textile Wastewater. JMBS 2019; 10 (1) :77-83
URL: http://biot.modares.ac.ir/article-22-14045-en.html
1- Cell & Molecular Biology Department, Chemistry Faculty, University of Kashan, Kashan, Iran
2- Cell & Molecular Biology Department, Chemistry Faculty, University of Kashan, Kashan, Iran, Cell & Molecular Biology Department, Chemistry Faculty, University of Kashan, 6Kilometer of Ghotbe Ravandi Boulevard, Kashan, Iran. Postal Code: 8731753153 , zahraei@kashanu.ac.ir
Abstract:   (6905 Views)
Aims: The dyes are high usage chemical compounds in textile industry. Discharge of colored effluent to the water sources, effect on the unpleasant appearance and the solubility of gases. The dyes reduce light penetration to the lower layers of water and photosynthetic activity. They caused cancers and variety of mutations. In this research, the decolorization ability of Reactive Red 152 dye by isolated strains from textile wastewater was measured, also environmental conditions were optimized.
Materials and Methods: In this experimental study, the bacterial strains were isolated from samples collected from different parts of textile wastewater. The dye decolorizing bacteria were screened. The decolorization ability of the strains was evaluated under different conditions such as incubation time from 0 to 72 hours, pH 6 to 9, different dye concentrations from 50 to 400mg/l and different carbon sources.
Findings: Ten strains were isolated from Kashan textile wastewater that 4 strains showed high ability in decolorization. The highest decolorization was observed after 48 hours, pH=9, 50mg/l concentration of dye and glucose as carbon source.
Conclusion: Textile wastewater contains bacterial strains which have high decolorization ability. Therefore, we can use these bacteria for decolorization of wastewater dyes.
Full-Text [PDF 421 kb]   (2784 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2017/02/25 | Accepted: 2017/06/12 | Published: 2019/03/16

References
1. Ado A, Gumel S M, Garba J. Industrial effluents as major source of water pollution in Nigeria: An overview. Am J Chem Appl. 2014;1(5):45-50. [Link]
2. Ghaly AE, Ananthashankar R, Alhattab M, Ramakrishnan VV. Production, characterization and treatment of textile effluents: A critical review. J Chem Eng Process Technol. 2014;5(1):1000182. [Link]
3. Kaur S, Singh V. TiO2 mediated photocatalytic degradation studies of reactive red 198 by UV irradiation. J Hazard Mater. 2007;141(1):230-6. [Link] [DOI:10.1016/j.jhazmat.2006.06.123]
4. Zhu C, Wang L, Kong L, Yang X, Wang L, Zheng S, et al. Photocatalytic degradation of AZO dyes by supported TiO2 + UV in aqueous solution. Chemosphere. 2000;41(3):303-9. [Link] [DOI:10.1016/S0045-6535(99)00487-7]
5. Shah MP, Patel KA, Nair SS, Darji AM. Isolation, identification and screening of dye decolorizing bacteria. Am J Microbiol Res. 2013;1(4):62-70. [Link] [DOI:10.12691/ajmr-1-4-1]
6. Khataee AR, Vatanpour V, Amani Ghadim AR. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO(2), Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study. J Hazard Mater. 2009;161(2-3):1225-33. [Link] [DOI:10.1016/j.jhazmat.2008.04.075]
7. Demirbas E, Nas MZ. Batch kinetic and equilibrium studies of adsorption of reactive blue 21 by fly ash and sepiolite. Desalination. 2009;243(1-3):8-21. [Link] [DOI:10.1016/j.desal.2008.04.011]
8. Chinta SK, Vijay Kumar Sh. Technical facts & figures of reactive dyes used in textiles. Int J Eng Manag Sci. 2013;4(3):308-12. [Link]
9. Šekuljica NŽ, Prlainović NŽ, Stefanović AB, Žuža MG, Čičkarić DZ, Mijin DŽ, et al. Decolorization of anthraquinonic dyes from textile effluent using horseradish peroxidase: Optimization and kinetic study. Sci World J. 2015;2015:371625. [Link] [DOI:10.1155/2015/371625]
10. Al Ahmed SGK. Some aerobic bacterial degradation and decolorization of different azo dyes. J Boil Agric Healthc. 2014;4(2):72-81. [Link]
11. Kabbout R, Taha S. Biodecolorization of textile dye effluent by biosorption on fungal biomass materials. Phys Procedia. 2014;55:437-44. [Link] [DOI:10.1016/j.phpro.2014.07.063]
12. Chen KC, Wu JY, Liou DJ, Hwang SC. Decolorization of the textile dyes by newly isolated bacterial strains. J Biotechnol. 2003;101(1):57-68. [Link] [DOI:10.1016/S0168-1656(02)00303-6]
13. Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SMM. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresour Technol. 2007;98(11):2082-8. [Link] [DOI:10.1016/j.biortech.2006.08.020]
14. Ahn DH, Chang WS, Yoon TI. Dyestuff wastewater treatment using chemical oxidation, physical adsorption and fixed bed biofilm process. Process Biochem. 1999;34(5):429-39. [Link] [DOI:10.1016/S0032-9592(98)00111-3]
15. Modi HA, Rajput G, Ambasana C. Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent. Bioresour Technol. 2010;101(16):6580-3. [Link] [DOI:10.1016/j.biortech.2010.03.067]
16. Alalewi A, Jiang C. Bacterial influence on textile wastewater decolorization. J Environ Prot. 2012;3(8A):889-901. [Link] [DOI:10.4236/jep.2012.328104]
17. Garg SK, Tripathi M, Singh SK, Tiwari JK. Biodecolorization of textile dye effluent by Pseudomonas putida SKG-1 (MTCC 10510) under the conditions optimized for monoazo dye orange II color removal in simulated minimal salt medium. Int Biodeterior Biodegrad. 2012;74:24-35. [Link] [DOI:10.1016/j.ibiod.2012.07.007]
18. Walaa Salah El-Din Mohamed. Isolation and screening of reactive dye decolorizing bacterial isolates from textile industry effluent. Int J Microbiol Res. 2016;7(1):01-08. [Link]
19. Illakkiam D, Subha D, Ahila V, Geetha N. Decolorization of alizarin red s dye by bacterial strains isolated from industrial effluents. Int J Plant Anim Environ Sci. 2016;6(1):268-75. [Link]
20. Garrity GM, Bernner DJ, Krig NR, Stalery, editors. Bergey's manual of systematic bacteriology. 2nd Volume. New York: Springer; 2005. pp. 1-399. [Link]
21. Harris RE, Bunch AW, Knowles CJ. Microbial cyanide and nitrile metabolism. Sci Prog. 1987;71(2):293-304. [Link]
22. Dash RR, Balomajumder C, Kumar A. Treatment of metal cyanide bearing wastewater by Simultaneous Adsorption and Biodegradation (SAB). J Hazard Mater. 2008;152(1):387-96. [Link] [DOI:10.1016/j.jhazmat.2007.07.009]
23. Yang Q, Li C, Li H, Li Y, Yu N. Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor. Biochem Eng J. 2009;43(3):225-30. [Link] [DOI:10.1016/j.bej.2008.10.002]
24. Kodam KM, Soojhawon I, Lokhande PD, Gawai KR. Microbial decolorization of reactive azo dyes under aerobic conditions. World J Microbiol Biotechnol. 2005;21(3):367-70. [Link] [DOI:10.1007/s11274-004-5957-z]
25. Banat IM, Makkar RS, Cameotra SS. Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol. 2000;53(5):495-508. [Link] [DOI:10.1007/s002530051648]
26. Jirasripongpun K, Nasanit R, Niruntasook J, Chotikasatian B. Decolorization and degradation of C. I. reactive red 195 by Enterobacter sp. Thammasat Int J Sci Technol. 2007;12(4):6-11. [Link]
27. Saratale RG, Saratale GD, Chang JS, Govindwar SP. Bacterial decolorization and degradation of azo dyes: A review. J Taiwan Inst Chem Eng. 2011;42(1):138-57. [Link] [DOI:10.1016/j.jtice.2010.06.006]
28. Fu L, Wen X, Lu Q, Qian Y. Treatment of dyeing wastewater in two SBR systems. Process Biochem. 2001;36(11):1111-8. [Link] [DOI:10.1016/S0032-9592(01)00143-1]
29. Velmurugan S, Ravikumar R. Biodegradation and decolorization of reactive dye red ME4BL by Bacillus subtilis. Int J Environ Bioremediat Biodegrad. 2014;2(6):250-5. [Link]
30. Cha CJ, Doerge DR, Cerniglia CE. Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl Environ Microbiol. 2001;67(9):4358-60. [Link] [DOI:10.1128/AEM.67.9.4358-4360.2001]
31. Khehra MS, Saini HS, Sharma DK, Chadha BS, Chimni SS. Decolorization of various azo dyes by bacterial consortium. Dyes Pigments. 2005;67(1):55-61. [Link] [DOI:10.1016/j.dyepig.2004.10.008]
32. Yemendzhiev H, Alexieva Z, Krastanov A. Decolorization of synthetic dye reactive blue 4 by mycelial culture of white-rot fungi Trametes versicolor 1. Biotechnol Biotechnol Equip. 2014;23(3):1337-9. [Link] [DOI:10.1080/13102818.2009.10817665]
33. Balraj B, Hussain Z, King K. Experimental study on non sporulating Escherichia coli bacteria in removing methylene blue. Int J Pharm Bio Sci. 2016;7(1):629-37. [Link]
34. Duggirala SM, Suhagi D P, Rakesh S, Bhatt N. Isolation and identification of bacterial culture for azo dye degrading capability. Int J Res Chem Environ. 2012;2(4):69-70. [Link]
35. Banat IM, Nigam P, Singh D, Marchant R. Microbial decolorization of textile-dyecontaining effluents: A review. Bioresour Technol. 1996;58(3):217-27. [Link] [DOI:10.1016/S0960-8524(96)00113-7]
36. Kolekar YM, Pawar SP, Adav SS, Zheng LQ, Li WJ, Shouche YS, et al. Alishewanella solinquinati sp. nov., isolated from soil contaminated with textile dyes. Curr Microbiol. 2013;67(4):454-9. [Link] [DOI:10.1007/s00284-013-0385-7]
37. Deepa S, Kanimozhi K, Panneerselvam A. Isolation, identification and antibacterial activity of marine actinomycetes isolated from saltpan region. Res J Sci Technol. 2012;4(2):70-3. [Link]
38. Karthikeyan A, Anbusaravanan N. Isolation, identification and characterisation of dye-adapted bacteria from textile effluents mixed with sewage released into the river Amaravathy, Karur, Tamilnadu, India. IOSR J Environ Sci Toxicol Food Technol. 2013;7(2):51-7. [Link] [DOI:10.9790/2402-0725157]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.