Volume 10, Issue 2 (2019)                   JMBS 2019, 10(2): 187-192 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jarchi S, Ataei F, Hosseinkhani S. Impact of Mutation at Position 330 of Luciferase on the Structure and Function. JMBS 2019; 10 (2) :187-192
URL: http://biot.modares.ac.ir/article-22-14330-en.html
1- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Biochemistry Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. Postal Code: 1411713116 , Ataei_f@modares.ac.ir
Abstract:   (8795 Views)
Luciferase from firefly Photinus pyralis (P .py) is a peroxisomal enzyme that converts a heterocyclic substrate luciferin to an excited state oxyluciferin in the presence of Mg+2-ATP and O2. Excited oxyluciferin with the emission of visible light is changed to its ground state. The combination of rapidity, sensitivity, and convenience has led to the development of a broad range of luminescence applications. In spite of wide ranges applications, firefly luciferase is unstable against changes in chemical and physical conditions, thereby reduce its precision and sensitivity. The most undesirable instability of the luciferase is low thermostability and high susceptibility to proteolytic degradation. According to previous studies, limited proteolysis by trypsin of P .py luciferase indicated six cleavage sites on two accessible regions: 206-220 (Including K206, R213, and R218) and 329-341 (Including K329, R330, and R337) on N-terminal domain. In this study, we used site-directed mutagenesis to introduce one point mutation on the 329-341 accessible regions of P. py luciferase, in order to investigate the role of R330 on the enzyme structure and function which R330 changed to Q. Based on limited proteolysis data, R330Q mutant didn’t significantly change compared to wild type, but this mutation caused several alterations in enzymatic properties including shifting the pH optimum from 7.5 to 8 and increasing the thermal inactivation. Based on the results, it can be concluded that whilst Arg330 is a conserved residue but not effects on trypsinolysis stability.
Full-Text [PDF 1272 kb]   (3492 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2017/09/2 | Accepted: 2017/11/15 | Published: 2019/06/20

References
1. Alex McDermott F. The stability of the photogenic material of the Lampyridae and its probable chemical nature. J Am Chem Soc. 1911;33(11):1791-7. [Link] [DOI:10.1021/ja02224a018]
2. Meighen EA. Molecular biology of bacterial bioluminescence. Microbiol Rev. 1991;55(1):123-42. [Link]
3. Said Alipour B, Hosseinkhani S, Ardestani SK, Moradi A. The effective role of positive charge saturation in bioluminescence color and thermostability of firefly luciferase. Photochem Photobiol Sci. 2009;8(6):847-55. [Link] [DOI:10.1039/b901938c]
4. Dementieva EI, Fedorchuk EA, Brovko LY, Savitskii AP, Ugarova NN. Fluorescent properties of firefly luciferases and their complexes with luciferin. Biosci Rep. 2000;20(1):21-30. [Link] [DOI:10.1023/A:1005579016387]
5. McElroy WD, DeLuca M, Travis J. Molecular uniformity in biological catalyses. The enzymes concerned with firefly luciferin, amino acid, and fatty acid utilization are compared. Science. 1967;157(3785):150-60. [Link] [DOI:10.1126/science.157.3785.150]
6. Cook SH, Griffin DE. Luciferase imaging of a neurotropic viral infection in intact animals. J Virol. 2003;77(9):5333-8. [Link] [DOI:10.1128/JVI.77.9.5333-5338.2003]
7. Ye L, Buck LM, Schaeffer HJ, Leach FR. Cloning and sequencing of a cDNA for firefly luciferase from Photuris pennsylvanica. Biochim Biophys Acta. 1997;1339(1):39-52. [Link] [DOI:10.1016/S0167-4838(96)00211-7]
8. Weng YH, Tatarov A, Bartos BP, Contag CH, Dennery PA. HO-1 expression in type II pneumocytes after transpulmonary gene delivery. Am J Physiol Lung Cell Mol Physiol. 2000;278(6):L1273-9. [Link] [DOI:10.1152/ajplung.2000.278.6.L1273]
9. Bhaumik S, Gambhir SS. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A. 2002;99(1):377-82. [Link] [DOI:10.1073/pnas.012611099]
10. Torkzadeh-Mahani M, Ataei F, Nikkhah M, Hosseinkhani S. Design and development of a whole-cell luminescent biosensor for detection of early-stage of apoptosis. Biosens Bioelectron. 2012;38(1):362-8. [Link] [DOI:10.1016/j.bios.2012.06.034]
11. Spielmann H, Jacob-Müller U, Schulz P. Simple assay of 0.1-1.0 pmol of ATP, ADP, and AMP in single somatic cells using purified luciferin luciferase. Anal Biochem. 1981;113(1):172-8. [Link] [DOI:10.1016/0003-2697(81)90061-0]
12. Thompson JF, Geoghegan KF, Lloyd DB, Lanzetti AJ, Magyar RA, Anderson SM, et al. Mutation of a protease-sensitive region in firefly luciferase alters light emission properties. J Biol Chem. 1997;272(30):18766-71. [Link] [DOI:10.1074/jbc.272.30.18766]
13. Govardhan CP. Crosslinking of enzymes for improved stability and performance. Curr Opin Biotechnol. 1999;10(4):331-5. [Link] [DOI:10.1016/S0958-1669(99)80060-3]
14. Ganjalikhany MR, Ranjbar B, Hosseinkhani S, Khalifeh Kh, Hassani L. Roles of trehalose and magnesium sulfate on structural and functional stability of firefly luciferase. J Mol Catal B Enzym. 2010;62(2):127-32. [Link] [DOI:10.1016/j.molcatb.2009.09.015]
15. Yousefi Nejad M, Hosseinkhani S, Khajeh Kh, Ranjbar B. Expression, purification and immobilization of firefly luciferase on alkyl-substituted Sepharose 4B. Enzyme Microb Technol. 2007;40(4):740-6. [Link] [DOI:10.1016/j.enzmictec.2006.06.023]
16. Gocht M, Marahiel MA. Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site-directed mutagenesis. J Bacteriol. 1994;176(9):2654-62. [Link] [DOI:10.1128/jb.176.9.2654-2662.1994]
17. Branchini BR, Magyar RA, Murtiashaw MH, Portier NC. The role of active site residue arginine 218 in firefly luciferase bioluminescence. Biochemistry. 2001;40(8):2410-8. [Link] [DOI:10.1021/bi002246m]
18. Riahi Madvar A, Hosseinkhani S. Design and characterization of novel trypsin-resistant firefly luciferases by site-directed mutagenesis. Protein Eng Des Sel. 2009;22(11):655-63. [Link] [DOI:10.1093/protein/gzp047]
19. Wang W, Malcolm BA. Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. Biotechniques. 1999;26(4):680-2. [Link] [DOI:10.2144/99264st03]
20. Ataei F, Hosseinkhani S, Khajeh Kh. Limited proteolysis of luciferase as a reporter in nanosystem biology: A comparative study. Photochem Photobiol. 2009;85(5):1162-7. [Link] [DOI:10.1111/j.1751-1097.2009.00583.x]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.