Volume 10, Issue 1 (2019)                   JMBS 2019, 10(1): 61-68 | Back to browse issues page

XML Persian Abstract Print


1- Biotechnology Research Center, Sahand University of Technology, Tabriz, Iran
2- Biotechnology Research Center, Sahand University of Technology, Tabriz, Iran, Biotechnology Research Center, Sahand University of Technology, Tabriz, Iran
Abstract:   (7131 Views)
​Microalgae with stores of carbohydrates are introduced as a promising energy resource to produce In this study, a mixed culture was used for reducing the processing costs. Afterward, nitrogen starvation strategy was used to increase the storage in The application of mixed cultures enhances the economic feasibility of the process due to the elimination of culture sterilization. After harvesting and drying enzymatic hydrolysis of microalgal biomass for extraction Afterward, the enzymatic hydrolysate of microalgal biomass (25, 50, 100g/L) underwent fermentation with Saccharomyces cerevisiae and kinetic models for fermentation were studied. The inhibition of glucose substrate and product was considered in the kinetic model. AQUASIM 2.0 software was used as a tool to simulate the fermentation process. The estimated values of the maximum specific growth rate (μ) Monod constant (Ks) to be 0.281h −1 1.8g/L, respectively. Also, the results indicate that the kinetic model predicted the behavior of the system well.
Full-Text [PDF 602 kb]   (4449 Downloads)    
Article Type: _ | Subject: Agricultural Biotechnology
Received: 2017/02/24 | Accepted: 2017/09/4 | Published: 2019/03/16

References
1. He Y, Wang Sh, Lai KK. Global economic activity and crude oil prices: A cointegration analysis. Energy Econ. 2010;32(4):868-76. [Link] [DOI:10.1016/j.eneco.2009.12.005]
2. Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Prog Energy Combust Sci. 2011;37(1):52-68. [Link] [DOI:10.1016/j.pecs.2010.01.003]
3. Stephenson AL, Dennis JS, Scott SA. Improving the sustainability of the production of biodiesel from oilseed rape in the UK. Process Saf Environ Prot. 2008;86(6):427-40. [Link] [DOI:10.1016/j.psep.2008.06.005]
4. Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol. 2013;135:191-8. [Link] [DOI:10.1016/j.biortech.2012.10.015]
5. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev. 2010;14(1):217-32. [Link] [DOI:10.1016/j.rser.2009.07.020]
6. Mitchell WJ, Slaughter JC. Biology and biochemistry for chemists and chemical engineers. Horwood: Ellis Horwood; 1989. [Link]
7. Harun R, Danquah MK. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem. 2011;46(1):304-9. [Link] [DOI:10.1016/j.procbio.2010.08.027]
8. Harun R, Danquah MK, Forde GM. Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol. 2010;85(2):199-203. [Link]
9. Hassanpour M, Abbasabadi M, Ebrahimi S, Hosseini M, Sheikhbaglou A. Gravimetric enrichment of high lipid and starch accumulating microalgae. Bioresour Technol. 2015;196:17-21. [Link] [DOI:10.1016/j.biortech.2015.07.046]
10. Mooij PR, Stouten GR, Tamis J, Van Loosdrecht MCM, Kleerebezem R. Survival of the fattest. Energy Environ Sci. 2013;6(12):3404-6. [Link] [DOI:10.1039/c3ee42912a]
11. Shokrkar H, Ebrahimi S, Zamani M. Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel. 2017;200:380-6. [Link] [DOI:10.1016/j.fuel.2017.03.090]
12. Shokrkar H, Ebrahimi S., Evaluation of different enzymatic treatment procedures on sugar extraction from microalgal biomass, experimental and kinetic study. Energy. 2018;148:258-68 [Link] [DOI:10.1016/j.energy.2018.01.124]
13. Cataldo DA, Maroon M, Schrader LE, Youngs VL. Rapid colorimetric determination of nitrate in plant-tissue by nitration of salicylic-acid. Commun Soil Sci Plant Anal. 1975;6(1):71-80. [Link] [DOI:10.1080/00103627509366547]
14. Ariyajaroenwong P, Laopaiboon P, Salakkam A, Srinophakun P, Laopaiboon L. Kinetic models for batch and continuous ethanol fermentation from sweet sorghum juice by yeast immobilized on sweet sorghum stalks. J Taiwan Inst Chem Eng. 2016;66:210-6. [Link] [DOI:10.1016/j.jtice.2016.06.023]
15. Wanner O, Reichert P. Mathematical modeling of mixed-culture biofilms. Biotechnol Bioeng. 1996;49(2):172-84. https://doi.org/10.1002/(SICI)1097-0290(19960120)49:2<172::AID-BIT6>3.0.CO;2-N [Link] [DOI:10.1002/(SICI)1097-0290(19960120)49:23.0.CO;2-N]
16. Yao C, Ai J, Cao X, Xue S, Zhang W. Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol. 2012;118:438-44. [Link] [DOI:10.1016/j.biortech.2012.05.030]
17. Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, et al. Microalgae--novel highly efficient starch producers. Biotechnol Bioeng. 2011;108(4):766-76. [Link] [DOI:10.1002/bit.23016]
18. Markou G, Angelidaki I, Georgakakis D. Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol. 2012;96(3):631-45. [Link] [DOI:10.1007/s00253-012-4398-0]
19. Harun R, Danquah MK. Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem Eng J. 2011;168(3):1079-84. [Link] [DOI:10.1016/j.cej.2011.01.088]
20. Wöhrer W. A horizontal bioreactor for ethanol production by immobilized cells. Bioprocess Eng. 1989;4(3):105-11. [Link] [DOI:10.1007/BF00369758]
21. Luong JH. Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol Bioeng. 1985;27(3):280-5. [Link] [DOI:10.1002/bit.260270311]
22. Thatipamala R, Rohani S, Hill GA. Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation. Biotechnol Bioeng. 1992;40(2):289-97. [Link] [DOI:10.1002/bit.260400213]
23. Ge XM, Bai FW. Intrinsic kinetics of continuous growth and ethanol production of a flocculating fusant yeast strain SPSC01. J Biotechnol. 2006;124(2):363-72. [Link] [DOI:10.1016/j.jbiotec.2005.12.029]
24. Oliveira SC, De Castro HF, Visconti AES, Giudici R. Continuous ethanol fermentation in a tower reactor with flocculating yeast recycle: Scale-up effects on process performance, kinetic parameters and model predictions. Bioprocess Eng. 1999;20(6):525-30. [Link] [DOI:10.1007/s004490050624]
25. Jin H, Liu R, He Y. Kinetics of batch fermentations for ethanol production with immobilized Saccharomyces cerevisiae growing on sweet sorghum stalk juice. Procedia Environ Sci. 2012;12(Pt A):137-45. [Link]
26. Thangprompan P, Thanapimmetha A, Saisriyoot M, Laopaiboon L, Srinophakun P. Production of ethanol from sweet sorghum juice using VHG technology: A simulation case study. Appl Biochem Biotechnol. 2013;171(2):294-314. [Link] [DOI:10.1007/s12010-013-0365-1]
27. Chen LJ, Xu YL, Bai FW, Anderson WA, Moo-Young M. Observed quasi-steady kinetics of yeast cell growth and ethanol formation under very high gravity fermentation condition. Biotechnol Bioprocess Eng. 2005;10(2):115-21. [Link] [DOI:10.1007/BF02932580]
28. Manikandan K, Saravanan V, Viruthagiri T. Kinetics studies on ethanol production from banana peel waste using mutant strain of Saccharomyces cerevisiae. Indian J Biotechnol. 2008;7(1):83-8. [Link]
29. Felix E, Clara O, Vincent AO. A kinetic study of the fermentation of cane sugar using Saccharomyces cerevisiae. Open J Phys Chem. 2014;4(1):26-31. [Link] [DOI:10.4236/ojpc.2014.41005]
30. Laopaiboon L, Nuanpeng S, Srinophakun P, Klanrit P, Laopaiboon P. Selection of Saccharomyces cerevisiae and investigation of its performance for very high gravity ethanol fermentation. Biotechnology. 2008;7(3):493-8. [Link] [DOI:10.3923/biotech.2008.493.498]
31. Ingledew WM. Alcohol production by Saccharomyces cerevisiae: A yeast primer. In: Jacques KA, Lyons TP, Kelsall DR, editors. The alcohol textbook: A reference for the beverage, fuel and industrial alcohol industries. 3rd Edition. Nottingham: Nottingham University Press; 1999. pp. 49-87. [Link]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.