Volume 10, Issue 1 (2019)                   JMBS 2019, 10(1): 93-101 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Poulakchi Saber S, Arab S. Molecular Dynamic Simulations of OmpF in a Double Bilayer Membranes: The Different Behavior of OmpF in an asymmetric Ionic Concentration System. JMBS 2019; 10 (1) :93-101
URL: http://biot.modares.ac.ir/article-22-14437-en.html
1- Biophysics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Biophysics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Biophysics Department, Biological Sciences Faculty, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran , sh.arab@modares.ac.ir
Abstract:   (7279 Views)
OmpF is one of the bacterial outer membrane protein which can transfer the ions into the membrane. During the last years different theoretical and experimental methods have been used for the investigation of the bacterial protein. In this study for retaining periodic boundary condition and investigation of the channel structural changes, we use double lipid bilayer in the system. Different ion concentration was applied into the lipid bilayers to make simulation much more realistic. The aim of this simulation is if there is any prominent direction in the ion passage of the channels. Structural analysis for two proteins with a different orientation is dissimilar and dssp analysis shows different peaks although there are common peaks. Lining residues and constriction zone amino acids in the two final frames are also diverse. There is no ion passage thorough protein 2. The results are completely different for the ion channels and it shows which after 100ns simulation one of the channels which its direction is similar to the natural channel in the bacterial membrane is open and the ion passage is clear and the other channel is completely closed which is related to the direction of the channel due to the ion concentration.
Full-Text [PDF 1572 kb]   (3956 Downloads)    
Subject: Agricultural Biotechnology
Received: 2017/06/9 | Accepted: 2017/09/6 | Published: 2019/03/16

References
1. Mori T, Miyashita N, Im W, Feig M, Sugita Y. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2016;1858(7 Pt B):1635-51. [Link] [DOI:10.1016/j.bbamem.2015.12.032]
2. Housden NG, Hopper JTS, Lukoyanova N, Rodriguez-Larrea D, Wojdyla JA, Klein A, et al. Intrinsically disordered protein threads through the bacterial outer-membrane porin OmpF. Science. 2013;340(6140):1570-4. [Link] [DOI:10.1126/science.1237864]
3. Patel DS, Wu EL, Klebba PE, Im W. Molecular Dynamics simulation studies of interactions of E. coli-K12 with OmpF in outer membranes: Effects of LPS structures on monoclonal antibodies binding. Biophys J. 2015;108(2 Suppl 1):249A. [Link] [DOI:10.1016/j.bpj.2014.11.1377]
4. Khalili-Araghi F, Gumbart J, Wen PC, Sotomayor M, Tajkhorshid E, Schulten K. Molecular dynamics simulations of membrane channels and transporters. Curr Opin Struct Biol. 2009;19(2):128-37. [Link] [DOI:10.1016/j.sbi.2009.02.011]
5. Ash WL, Zlomislic MR, Oloo EO, Peter Tieleman D. Computer simulations of membrane proteins. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2004;1666(1-2):158-89. [Link] [DOI:10.1016/j.bbamem.2004.04.012]
6. Gumbart J, Wang Y, Aksimentiev A, Tajkhorshid E, Schulten K. Molecular dynamics simulations of proteins in lipid bilayers. Curr Opin Struct Biol. 2005;15(4):423-31. [Link] [DOI:10.1016/j.sbi.2005.07.007]
7. Im W, Roux B. Ions and counterions in a biological channel: A molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. J Mol Biol. 2002;319(5):1177-97. [Link] [DOI:10.1016/S0022-2836(02)00380-7]
8. Benz R, Bauer K. Permeation of hydrophilic molecules through the outer membrane of gram-negative bacteria, review on bacterial porins. Eur J Biochem. 1988;176(1):1-19. [Link] [DOI:10.1111/j.1432-1033.1988.tb14245.x]
9. Jap BK, Walian PJ. Biophysics of the structure and function of porins. Q Rev Biophys. 1990;23(4):367-403. [Link] [DOI:10.1017/S003358350000559X]
10. Nikaido H. Transport across the bacterial outer membrane. J Bioenerg Biomembr. 1993;25(6):581-9. [Link]
11. Cowan SW, Garavito RM, Jansonius JN, Jenkins JA, Karlsson R, König N, et al. The structure of OmpF porin in a tetragonal crystal form. Structure. 1995;3(10):1041-50. [Link] [DOI:10.1016/S0969-2126(01)00240-4]
12. Robertson KM, Tieleman DP. Molecular basis of voltage gating of OmpF porin. Biochem Cell Biol. 2002;80(5):517-23. [Link] [DOI:10.1139/o02-145]
13. Dutzler R, Rummel G, Albertí S, Hernández-Allés S, Phale P, Rosenbusch J, et al. Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Structure. 1999;7(4):425-34. [Link] [DOI:10.1016/S0969-2126(99)80055-0]
14. Benz R, Schmid A, Hancock RE. Ion selectivity of gram-negative bacterial porins. J Bacteriol. 1985;162(2):722-7. [Link]
15. Saint N, Lou KL, Widmer C, Luckey M, Schirmer T, Rosenbusch JP. Structural and functional characterization of OmpF porin mutants selected for larger pore size. II. Functional characterization. J Biol Chem. 1996;271(34):20676-80. [Link] [DOI:10.1074/jbc.271.34.20676]
16. Suenaga A, Komeiji Y, Uebayasi M, Meguro T, Saito M, Yamato I. Computational observation of an ion permeation through a channel protein. Biosci Rep. 1998;18(1):39-48. [Link] [DOI:10.1023/A:1022292801256]
17. Tieleman DP, Berendsen HJ. A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J. 1998;74(6):2786-801. [Link] [DOI:10.1016/S0006-3495(98)77986-X]
18. Tieleman DP, Berendsen HJ, Sansom MS. An alamethicin channel in a lipid bilayer: Molecular dynamics simulations. Biophys J. 1999;76(4):1757-69. [Link] [DOI:10.1016/S0006-3495(99)77337-6]
19. Tieleman DP, Forrest LR, Sansom MS, Berendsen HJ. Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: Molecular dynamics simulations. Biochemistry. 1998;37(50):17554-61. [Link] [DOI:10.1021/bi981802y]
20. Nestorovich EM, Rostovtseva TK, Bezrukov SM. Residue ionization and ion transport through OmpF channels. Biophys J. 2003;85(6):3718-29. [Link] [DOI:10.1016/S0006-3495(03)74788-2]
21. Im W, Roux B. Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. J Mol Biol. 2002;322(4):851-69. [Link] [DOI:10.1016/S0022-2836(02)00778-7]
22. Khalili Araghi F, Ziervogel B, Gumbart JC, Roux B. Molecular dynamics simulations of membrane proteins under asymmetric ionic concentrations. J Gen Physiol. 2013;142(4):465-75. [Link] [DOI:10.1085/jgp.201311014]
23. Pellegrini-Calace M, Maiwald T, Thornton JM. PoreWalker: A novel tool for the identification and characterization of channels in transmembrane proteins from their three-dimensional structure. PLoS Comput Biol. 2009;5(7):e1000440. [Link] [DOI:10.1371/journal.pcbi.1000440]
24. Petrek M, Otyepka M, Banás P, Kosinová P, Koca J, Damborský J. CAVER: A new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics. 2006;7:316. [Link] [DOI:10.1186/1471-2105-7-316]
25. Kutzner C, Köpfer DA, Machtens JP, De Groot BL, Song C, Zachariae U. Insights into the function of ion channels by computational electrophysiology simulations. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2016;1858(7 Pt B):1741-52. [Link] [DOI:10.1016/j.bbamem.2016.02.006]
26. Ionescu SA, Lee S, Housden NG, Kaminska R, Kleanthous C, Bayley H. Orientation of the OmpF porin in planar lipid bilayers. Chembiochem. 2017;18(6):554-62. [Link] [DOI:10.1002/cbic.201600644]
27. Pezeshki S, Chimerel C, Bessonov AN, Winterhalter M, Kleinekathöfer U. Understanding ion conductance on a molecular level: An all-atom modeling of the bacterial porin OmpF. Biophys J. 2009;97(7):1898-906. [Link] [DOI:10.1016/j.bpj.2009.07.018]
28. Delemotte L, Dehez F, Treptow W, Tarek M. Modeling membranes under a transmembrane potential. J Phys Chem B. 2008;112(18):5547-50. [Link] [DOI:10.1021/jp710846y]
29. Gumbart J, Khalili Araghi F, Sotomayor M, Roux B. Constant electric field simulations of the membrane potential illustrated with simple systems. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2012;1818(2):294-302. [Link] [DOI:10.1016/j.bbamem.2011.09.030]
30. Roux B. The membrane potential and its representation by a constant electric field in computer simulations. Biophys J. 2008;95(9):4205-16. [Link] [DOI:10.1529/biophysj.108.136499]
31. Sachs JN, Crozier PS, Woolf TB. Atomistic simulations of biologically realistic transmembrane potential gradients. J Chem Phys. 2004;121(22):10847-51. [Link] [DOI:10.1063/1.1826056]
32. Phale PS, Philippsen A, Widmer C, Phale VP, Rosenbusch JP, Schirmer T. Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation. Biochemistry. 2001;40(21):6319-25. [Link] [DOI:10.1021/bi010046k]
33. Niramitranon J, Sansom MS, Pongprayoon P. Why do the outer membrane proteins OmpF from E. coli and OprP from P. aeruginosa prefer trimers? simulation studies. J Mol Graph Model. 2016;65:1-7. [Link] [DOI:10.1016/j.jmgm.2016.02.002]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.