Volume 10, Issue 3 (2019)                   JMBS 2019, 10(3): 363-371 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kavousi K, Hamidi Zahedani A R. Reduction and Finding of Attractors in ABA Signaling Pathway Network by Boolean Modeling. JMBS 2019; 10 (3) :363-371
URL: http://biot.modares.ac.ir/article-22-14507-en.html
1- Biochemistry & Biophysics Research Center, University of Tehran, Tehran, Iran, Bioinformatics Department, Institute of Biochemistry & Biophysics, University of Tehran, Ghods Street, Enghelab Street , kkavousi@ut.ac.ir
2- Biochemistry & Biophysics Research Center, University of Tehran, Tehran, Iran
Abstract:   (6365 Views)
The large biological networks increase computational complexity during the execution of the algorithm and create constraints for working with such networks. By preserving the behavior and output of the main network, complexity is reduced, and the process of obtaining results and analyzing the network is quickly accomplished. Using mathematical and computational tools to simplify the biology networks provides better results in various sciences, especially in applications of biological sciences. Boolean modelling and finding adsorbents in biological networks will make it easy to display and analyze. This study was carried out through Boolean modelling on the Abscise Acid signal transduction network. Abscise Acid is one of the most important and effective regulators in plant growth. Our method started from an initial state and according to the rules of updating, found network adsorbents. Our proposed method, in contrast to other methods, will be able to simultaneously detect the absorbing points while plotting the state transition graph. In this way, finding all the system adsorbents is guaranteed.
Full-Text [PDF 1380 kb]   (2608 Downloads)    
Subject: Agricultural Biotechnology
Received: 2017/10/10 | Accepted: 2018/01/1 | Published: 2019/09/21

References
1. Kitano H. Systems biology: a brief overview. Science. 2002;295(5560):1662-4. [Link] [DOI:10.1126/science.1069492]
2. Bloomingdale P, Nguyen VA, Niu J, Mager DE. Boolean network modeling in systems pharmacology. J Pharmacokinet Pharmacodyn. 2018;45(1):159-80. [Link] [DOI:10.1007/s10928-017-9567-4]
3. Albert R, Barabasi AL. Statistical mechanics of complex networks. Rev Mod Phys. 2002;74(47):1-54. [Link] [DOI:10.1103/RevModPhys.74.47]
4. Kell DB, Knowles JD. The role of modeling in systems biology. In: Szallasi Z, Stelling J, Periwal V, editors. System modeling in cellular biology: from concepts to nuts and bolts. Cambridge: The MIT Press; 2013. p.p 1-29. [Link]
5. Aluru S, editor. Handbook of computational molecular biology. Boca Raton: Chapman & Hall/CRC; 2005. [Link] [DOI:10.1201/9781420036275]
6. Kauffman SA. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol. 1969;22(3):437-67. [Link] [DOI:10.1016/0022-5193(69)90015-0]
7. Veliz-Cuba A. Reduction of Boolean network models. J Theor Biol. 2011;289:167-72. [Link] [DOI:10.1016/j.jtbi.2011.08.042]
8. Saadatpour A, Albert R, Reluga TC. A reduction method for Boolean network models proven to conserve attractors. SIAM J Appl Dyn Syst. 2013;12(4):1997-2011. [Link] [DOI:10.1137/13090537X]
9. Yue J, Yan Y, Zhang Z, Li S. Matrix approach to simplify Boolean networks. 36th Chinese Control Conference. Dalian, China; 2017. [Link] [DOI:10.23919/ChiCC.2017.8027659]
10. Ishitsuka M, Akutsu T, Nacher JC. Critical controllability analysis of directed biological networks using efficient graph reduction. Sci Rep. 2017;7(14361):1-10. [Link] [DOI:10.1038/s41598-017-14334-8]
11. Matache MT, Matache V. Logical reduction of biological networks to their most determinative components. Bull Math Biol. 2016;78(7):1520-45. [Link] [DOI:10.1007/s11538-016-0193-x]
12. Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings. Plant CELL. 2002;14(suppl.):S15-S45. [Link] [DOI:10.1105/tpc.010441]
13. Gao YP, Bonham-Smith PC, Gusta LV. The role of peroxiredoxin antioxidant and calmodulin in ABA-primed seeds of Brassica napus exposed to abiotic stresses during germination. J Plant Physiol. 2002;159(9):951-8. [Link] [DOI:10.1078/0176-1617-00782]
14. Gray WM. Hormonal regulation of plant growth and development. PLoS Biol. 2004;2(9):e311. [Link] [DOI:10.1371/journal.pbio.0020311]
15. Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, et al. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet. 2011;7(7):e1002172. [Link] [DOI:10.1371/journal.pgen.1002172]
16. Wilkinson S, Davies WJ. ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ. 2002;25(2):195-210. [Link] [DOI:10.1046/j.0016-8025.2001.00824.x]
17. Li S, Assmann SM, Albert R. Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol. 2006;4(10):e312. [Link] [DOI:10.1371/journal.pbio.0040312]
18. Flobak A, Baudot A, Remy E, Thommesen L, Thieffry D, Kuiper M, et al. Discovery of drug synergies in gastric cancer cells predicted by logical modeling. PLoS Comput Biol. 2015;11(8):e1004426. [Link] [DOI:10.1371/journal.pcbi.1004426]
19. Bornholdt S. Boolean network models of cellular regulation: prospects and limitations. J Royal Soc. 2008;5(Suppl-1):S85-94. [Link] [DOI:10.1098/rsif.2008.0132.focus]
20. Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics. 2002;18(2):261-74. [Link] [DOI:10.1093/bioinformatics/18.2.261]
21. Shmulevich I, Dougherty ER. Probabilistic Boolean networks: the modeling and control of gene regulatory networks. New York: SIAM; 2010 [Link] [DOI:10.1137/1.9780898717631]
22. Saadatpour A, Albert R. Boolean modeling of genetic regulatory networks: a methodology tutorial. Methods. 2013;62(1):3-12. [Link] [DOI:10.1016/j.ymeth.2012.10.012]
23. Poret A, Sousa CM, Boissel JP. Enhancing Boolean networks with fuzzy operators and edge tuning. Hal. 2014; hal-01018236v4. [Link]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.