Volume 10, Issue 2 (2019)                   JMBS 2019, 10(2): 201-209 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabagh R, Haddad-Mashadrizeh A, Dolatabadi S. Designing and Evaluation of the Structure and Functions of New Immunotoxins for Ovarian Cancer in Quasi-Physiological Conditions. JMBS 2019; 10 (2) :201-209
URL: http://biot.modares.ac.ir/article-22-14617-en.html
1- Biology Department, Science Faculty, Science & Research Branch, Islamic Azad University, Neyshabur, Iran
2- Recombinant Proteins Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran, Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran. Postal Code: 9177948974 , a.haddad@um.ac.ir
3- Microbiology Department, Science Faculty, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
Abstract:   (8344 Views)
Immunotoxins, as a critical approach for cancer therapy, have ability to induction death in cancerous cells based on specific ligands for targeting cancer-specific antigens and toxin domains in its context. Bearing in mind, discovery the cancer-specific antigens, as well as immunotoxin characterization for modeling based on linkers application, is a critical step for drugs design, which is considered in this study for ovarian cancer based on in-silico biology. The results of this study, led to the detection of 29 antigens with expression capacity on the surface of ovarian cancer cells, with the highest and specific expression associated with MAGE4 and CA125 antigens. Moreover, the 3D structure of MAGE4 was performed, and the pattern of its expression was determined to rely on HLA proteins. On the other hand, among connecting proteins to this antigen TRIM69 selected as the most effective ligand. Subsequently, the assembling between the domain of Corynebacterium diphtheria and this ligand with (GGGGS) 3 linker in 5 positions led to the creation of 50 models, with different quality and structure. However, among these models, S4 drug showed the best structure and function including binding affinity and immunogenicity after simulation in physiological condition. Generally, this result led to present the MAGE4 as a suitable candidate for immunotoxin development for ovarian cancer, as well as an effective immunotoxin which should be considered in an experimental condition.
Full-Text [PDF 1123 kb]   (3503 Downloads)    
Article Type: _ | Subject: Agricultural Biotechnology
Received: 2018/01/23 | Accepted: 2018/04/9 | Published: 2019/06/20

References
1. Steinfeld AD. Principles and practice of radiation oncology. Radiology. 1988;167(3):612. [Link] [DOI:10.1148/radiology.167.3.612]
2. Keramati K, Mehranpoor M, Babakhani A, Vaezi GH, Habibi F. Effect of flunixin on ovarian cancer induced by DMBA in female wistar rats. Knowl Health. 2012;7(1):44-9. [Persian] [Link]
3. Wen H, Sun W, Guo Y. Prognosis and prognostic factor analysis epithelial ovarian cancer. Zhonghua Fu Chan Ke Za Zhi. 1997;32(3):159-62. [Chinese] [Link]
4. Heydari M, Robatjazi SM, Zeinoddini M, Darabi E. Optimization of chemically defined cell culture media for recombinant ONTAK immunotoxin production. Iran J Med Microbiol. 2014;8(3):51-7. [Persian] [Link]
5. Pai LH, Bookman MA, Ozols RF, Young RC, Smith JW, Longo DL, et al. Clinical evaluation of intraperitoneal Pseudomonas exotoxin immunoconjugate OVB3-PE in patients with ovarian cancer. J Clin Oncol. 1991;9(12):2095-103. [Link] [DOI:10.1200/JCO.1991.9.12.2095]
6. Zhang Y, Pastan I. High shed antigen levels within tumors: An additional barrier to immunoconjugate therapy. Clin Cancer Res. 2008;14(24):7981-6. [Link] [DOI:10.1158/1078-0432.CCR-08-0324]
7. Martin A, Gutierrez E, Muglia J, Mc Donald CJ, Guzzo C, Gottlieb A, et al. A multicenter dose-escalation trial with denileukin diftitox (ONTAK, DAB(389)IL-2) in patients with severe psoriasis. J Am Acad Dermatol. 2001;45(6):871-81. [Link] [DOI:10.1067/mjd.2001.117852]
8. Beladi Mousavi SS, Hajibabaei Kh, Hamledari A, Tamadon MR, Ardalan MR. Introduction to chemical construction of immunotoxins and their applications in the treatment of diseases. Immunopathologia Persa. 2016;2(1):e02. [Link]
9. Wayne AS, Fitzgerald DJ, Kreitman RJ, Pastan I. Immunotoxins for leukemia. Blood. 2014;123(16):2470-7. [Link] [DOI:10.1182/blood-2014-01-492256]
10. Pastan I, Hassan R, Fitz Gerald DJ, Kreitman RJ. Immunotoxin treatment of cancer. Annu Rev Med. 2007;58:221-37. [Link] [DOI:10.1146/annurev.med.58.070605.115320]
11. Barth S, Schiffer S. Novel immunoproteases [Internet]. Mountain View: Google Patents; 2013 [cited 2014 May 14]. Available from: https://patents.google.com/patent/EP2730289A1/en [Link]
12. Khatib F, Di Maio F, Foldit Contenders Group, Foldit Void Crushers Group, Cooper S, Kazmierczyk M, et al. Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nat Struct Mol Biol. 2011;18(10):1175-7. [Link] [DOI:10.1038/nsmb.2119]
13. Chiti F, Dobson CM. Amyloid formation by globular proteins under native conditions. Nat Chem Biol. 2009;5(1):15-22. [Link] [DOI:10.1038/nchembio.131]
14. Akterian SG, Fernandez PS, Hendrickx ME, Tobback PP, Periago PM, Martinez A. Risk analysis of the thermal sterilization process, analysis of factors affecting the thermal resistance of microorganisms. Int J Food Microbiol. 1999;47(1-2):51-7. [Link] [DOI:10.1016/S0168-1605(99)00005-7]
15. Huang JS, Huang SS, Kennedy B, Deuel TF. Platelet-derived growth factor, specific binding to target cells. J Biol Chem. 1982;257(14):8130-6. [Link]
16. Gold P, Freedman SO. Specific carcinoembryonic antigens of the human digestive system. J Exp Med. 1965;122(3):467-81. [Link] [DOI:10.1084/jem.122.3.467]
17. Moniaux N, Andrianifahanana M, Brand RE, Batra SK. Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy. Br J Cancer. 2004;91(9):1633-8. [Link] [DOI:10.1038/sj.bjc.6602163]
18. Bendifallah N, Rasmussen FW, Zachar V, Ebbesen P, Nielsen PE, Koppelhus U. Evaluation of Cell-Penetrating Peptides (CPPs) as vehicles for intracellular delivery of antisense Peptide Nucleic Acid (PNA). Bioconjug Chem. 2006;17(3):750-8. [Link] [DOI:10.1021/bc050283q]
19. Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003;21(3):255-61. [Link] [DOI:10.1038/nbt0303-255]
20. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171(4):603-14. [Link] [DOI:10.1083/jcb.200507002]
21. Cunningham-Rundles S, Mc Neeley DF, Moon A. Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol. 2005;115(6):1119-28. [Link] [DOI:10.1016/j.jaci.2005.04.036]
22. Kitov PI, Shimizu H, Homans SW, Bundle DR. Optimization of tether length in nonglycosidically linked bivalent ligands that target sites 2 and 1 of a Shiga-like toxin. J Am Chem Soc. 2003;125(11):3284-94. [Link] [DOI:10.1021/ja0258529]
23. Powell MF, Stewart T, Otvos L Jr, Urge L, Gaeta FC, Sette A, et al. Peptide stability in drug development. II, effect of single amino acid substitution and glycosylation on peptide reactivity in human serum. Pharm Res. 1993;10(9):1268-73. [Link] [DOI:10.1023/A:1018953309913]
24. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751-60. [Link] [DOI:10.1038/nnano.2007.387]
25. Chaudhary K, Kumar R, Singh S, Tuknait A, Gautam A, Mathur D, et al. A web server and mobile app for computing hemolytic potency of peptides. Sci Rep. 2016;6;22843. [Link] [DOI:10.1038/srep22843]
26. Meier A, Söding J. Automatic prediction of protein 3D structures by probabilistic multi-template homology modeling. PLoS Comput Biol. 2015;11(10):e1004343. [Link] [DOI:10.1371/journal.pcbi.1004343]
27. Heinz DW, Baase WA, Dahlquist FW, Matthews BW. How amino-acid insertions are allowed in an alpha-helix of T4 lysozyme. Nature. 1993;361(6412):561-4. [Link] [DOI:10.1038/361561a0]
28. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. [Link] [DOI:10.1126/science.1260419]
29. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447-52. [Link] [DOI:10.1093/nar/gku1003]
30. Blom N, Sicheritz-Pontén T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 2004;4(6):1633-49. [Link] [DOI:10.1002/pmic.200300771]
31. Kirk IK, Weinhold N, Belling K, Skakkebæk NE, Jensen TS, Leffers H. Chromosome-wise protein interaction patterns and their impact on functional implications of large-scale genomic aberrations. Cell Syst. 2017;4(3):357-64.e3. [Link] [DOI:10.1016/j.cels.2017.01.001]
32. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42(Web Server issue):W252-8. [Link] [DOI:10.1093/nar/gku340]
33. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: Protein structure and function prediction. Nat Methods. 2015;12(1):7-8. [Link] [DOI:10.1038/nmeth.3213]
34. Patnaik S, Mohanty M, Bit A, Sahoo L, Das S, Jayasankar P, et al. Molecular characterization of Activin Receptor Type IIA and its expression during gonadal maturation and growth stages in rohu carp. Comp Biochem Physiol Part B Biochem Mol Biol. 2017;203:1-10. [Link] [DOI:10.1016/j.cbpb.2016.08.005]
35. Fisher SJ, Helliwell JR, Khurshid S, Govada L, Redwood C, Squire JM, et al. An investigation into the protonation states of the C1 domain of cardiac myosin-binding protein C. Acta Crystallogr D Biol Crystallogr. 2008;64(Pt 6):658-64. [Link] [DOI:10.1107/S0907444908008792]
36. Lovell SC, Davis IW, Bryan Arendall III W, De Bakker PIW, Michael Word J, Prisant MG, et al. Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins. 2003;50(3):437-50. [Link] [DOI:10.1002/prot.10286]
37. Colovos C, Yeates TO. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993;2(9):1511-9. [Link] [DOI:10.1002/pro.5560020916]
38. Syed R, Rani R, Sabeena, Masoodi TA, Shafi G, Alharbi K. Functional analysis and structure determination of alkaline protease from Aspergillus flavus. Bioinformation. 2012;8(4):175-80. [Link] [DOI:10.6026/97320630008175]
39. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-25. [Link] [DOI:10.1016/j.softx.2015.06.001]
40. Yao B, Zhang L, Liang S, Zhang C. SVMTriP: A method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One. 2012;7(9):e45152. [Link] [DOI:10.1371/journal.pone.0045152]
41. Kozakov D, Beglov D, Bohnuud T, Mottarella SE, Xia B, Hall DR, et al. How good is automated protein docking?. Proteins. 2013;81(12):2159-66. [Link] [DOI:10.1002/prot.24403]
42. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33(Web Server issue):W363-7. [Link] [DOI:10.1093/nar/gki481]
43. Van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, et al. The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. J Mol Biol. 2016;428(4):720-5. [Link] [DOI:10.1016/j.jmb.2015.09.014]
44. Heydari M, Robatjazi SM, Zeinoddini M. Investigation of the complex culture medium composition for improved production of ONTAK immunotoxin by recombinant Escherichia coli. J Rafsanjan Univ Med Sci. 2015;13(11):1083-90. [Persian] [Link]
45. Wang R, Gan C, Gao W, He W, Wang X, Peng Y, et al. A novel recombinant immunotoxin with the smallest ribosome-inactivating protein Luffin P1: T-cell cytotoxicity and prolongation of allograft survival. J Cell Mol Med. 2010;14(3):578-86. [Link] [DOI:10.1111/j.1582-4934.2009.00840.x]
46. Maloney DG. Immunotherapy for non-Hodgkin's lymphoma: Monoclonal antibodies and vaccines. J Clin Oncol. 2005;23(26):6421-8. [Link] [DOI:10.1200/JCO.2005.06.004]
47. Chatrchyan S, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al. Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks. Phys Rev D. 2014;89(1):012003. [Link] [DOI:10.1103/PhysRevD.89.012003]
48. Hynes NE, Lane HA. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341-54. [Link] [DOI:10.1038/nrc1609]
49. Kreitman RJ, Pastan I. Recombinant toxins containing human granulocyte-macrophage colony-stimulating factor and either pseudomonas exotoxin or diphtheria toxin kill gastrointestinal cancer and leukemia cells. Blood. 1997;90(1):252-9. [Link]
50. Kreitman RJ, Wilson WH, White JD, Stetler-Stevenson M, Jaffe ES, Giardina S, et al. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies. J Clin Oncol. 2000;18(8):1622-36. [Link] [DOI:10.1200/JCO.2000.18.8.1622]
51. Kreitman RJ, Squires DR, Stetler-Stevenson M, Noel P, Fitz Gerald DJ, Wilson WH, et al. Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cell malignancies. J Clin Oncol. 2005;23(27):6719-29. [Link] [DOI:10.1200/JCO.2005.11.437]
52. Duraisamy S, Ramasamy S, Kharbanda S, Kufe D. Distinct evolution of the human carcinoma-associated transmembrane mucins, MUC1, MUC4 AND MUC16. Gene. 2006;373:28-34. [Link] [DOI:10.1016/j.gene.2005.12.021]
53. De Plaen E, Arden K, Traversari C, Gaforio JJ, Szikora JP, De Smet C, et al. Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics. 1994;40(5):360-9. [Link] [DOI:10.1007/BF01246677]
54. Hussein YM, Gharib AF, Etewa RL, El-Shal AS, Abdel-Ghany ME, Elsawy WH. The melanoma-associated antigen-A3, -A4 genes: Relation to the risk and clinicopathological parameters in breast cancer patients. Mol Cell Biochem. 2011;351(1-2):261-8. [Link] [DOI:10.1007/s11010-011-0734-4]
55. Mirandola L, J Cannon M, Cobos E, Bernardini G, Jenkins MR, Kast WM, et al. Cancer testis antigens: Novel biomarkers and targetable proteins for ovarian cancer. Int Rev Immunol. 2011;30(2-3):127-37. [Link] [DOI:10.3109/08830185.2011.572504]
56. Mc Nab FW, Rajsbaum R, Stoye JP, O'Garra A. Tripartite-motif proteins and innate immune regulation. Curr Opin Immunol. 2011;23(1):46-56. [Link] [DOI:10.1016/j.coi.2010.10.021]
57. Yaguchi H, Okumura F, Takahashi H, Kano T, Kameda H, Uchigashima M, et al. TRIM67 protein negatively regulates Ras activity through degradation of 80K-H and induces neuritogenesis. J Biol Chem. 2012;287(15):12050-9. [Link] [DOI:10.1074/jbc.M111.307678]
58. Han R, Zhao Q, Zong S, Miao S, Song W, Wang L. A novel TRIM family member, Trim69, regulates zebrafish development through p53-mediated apoptosis. Mol Reprod Dev. 2016;83(5):442-54. [Link] [DOI:10.1002/mrd.22643]
59. Kasauli H. Manual for the production and standardization of Diphtheria-Pertussis-Tetanus Vaccine. India: Central Research Institute; 1989. [Link]
60. Liu SC, Donahue TM. Mesospheric hydrogen related to exospheric escape mechanisms. J Atmos Sci. 1974;31(5):1466-70. https://doi.org/10.1175/1520-0469(1974)031<1466:MHRTEE>2.0.CO;2 [Link] [DOI:10.1175/1520-0469(1974)0312.0.CO;2]
61. Stirpe F, Battelli MG. Ribosome-inactivating proteins: Progress and problems. Cell Mol Life Sci. 2006;63(16):1850-66. [Link] [DOI:10.1007/s00018-006-6078-7]
62. Dang NH, Pro B, Hagemeister FB, Samaniego F, Jones D, Samuels BI, et al. Phase II trial of denileukin diftitox for relapsed/refractory T-cell non-Hodgkin lymphoma. Br J Haematol. 2007;136(3):439-47. [Link] [DOI:10.1111/j.1365-2141.2006.06457.x]
63. FitzGerald DJ, Kreitman R, Wilson W, Squires D, Pastan I. Recombinant immunotoxins for treating cancer. Int J Med Microbiol. 2004;293(7-8):577-82. [Link] [DOI:10.1078/1438-4221-00302]
64. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotný J, Margolies MN, et al. Bruccoleri, E. Haber and R. Crea (1988). Protein engineering of antibody binding sites: Recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A. 1988;85(16):5879-83. [Link] [DOI:10.1073/pnas.85.16.5879]
65. Koopman SJ, Harvey AC, Doornik JA, Shephard N. STAMP 6.0 structural time series analyzer, modeller and predictor. London: Timberlake Consultants; 2000. [Link]
66. Skrt M, Benedik E, Podlipnik C, Ulrih NP. Interactions of different polyphenols with bovine serum albumin using fluorescence quenching and molecular docking. Food Chem. 2012;135(4):2418-24. [Link] [DOI:10.1016/j.foodchem.2012.06.114]
67. Mouchlis VD, Bucher D, Mc Cammon JA, Dennis EA. Membranes serve as allosteric activators of phospholipase A2, enabling it to extract, bind, and hydrolyze phospholipid substrates. Proc Natl Acad Sci U S A. 2015;112(6):E516-25. [Link] [DOI:10.1073/pnas.1424651112]
68. Kazenwadel J, Betterman KL, Chong CE, Stokes PH, Lee YK, Secker GA, et al. GATA2 is required for lymphatic vessel valve development and maintenance. J Clin Invest. 2015;125(8):2979-94. [Link] [DOI:10.1172/JCI78888]
69. Jiang MX, Hong X, Liao BB, Shi SZ, Lai XF, Zheng HY, et al. Expression profiling of TRIM protein family in THP1-derived macrophages following TLR stimulation. Sci Rep. 2017;7:42781. [Link] [DOI:10.1038/srep42781]
70. Soni S, Tyagi C, Grover A, Goswami SK. Molecular modeling and molecular dynamics simulations based structural analysis of the SG2NA protein variants. BMC Res Notes. 2014;7:446. [Link] [DOI:10.1186/1756-0500-7-446]
71. Fermi E, Pasta P, Ulam S, Tsingou M. Studies of the nonlinear problems [Internet]. Oak Ridge: OSTI; 1955 [cited 2014 May 14]. Available from: https://www.osti.gov/biblio/4376203-studies-nonlinear-problems [Link] [DOI:10.2172/4376203]
72. Bakar NAAB, Hashim SZM, Omar MSS. MDSA-an interactive analysis tool for Protein Molecular Dynamic Simulations: Preliminary Study. 2013. [Link]
73. Mac Kerell AD Jr, Banavali N, Foloppe N. Development and current status of the CHARMM force field for nucleic acids. Biopolymers. 2000-2001;56(4):257-65. https://doi.org/10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W [Link] [DOI:10.1002/1097-0282(2000)56:43.0.CO;2-W]
74. Azam SS, Abbasi SW. Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor Biol Med Model. 2013;10:63. [Link] [DOI:10.1186/1742-4682-10-63]
75. Costanzi S, Mamedova L, Gao ZG, Jacobson KA. Architecture of P2Y nucleotide receptors: Structural comparison based on sequence analysis, mutagenesis, and homology modeling. J Med Chem. 2004;47(22):5393-404. [Link] [DOI:10.1021/jm049914c]
76. Ivanov AA, Costanzi S, Jacobson KA. Defining the nucleotide binding sites of P2Y receptors using rhodopsin-based homology modeling. J Comput Aided Mol Des. 2006;20(7-8):417-26. [Link] [DOI:10.1007/s10822-006-9054-2]
77. Olal D, Kuehne AI, Bale S, Halfmann P, Hashiguchi T, Fusco ML, et al. Structure of an antibody in complex with its mucin domain linear epitope that is protective against Ebola virus. J Virol. 2012;86(5):2809-16. [Link] [DOI:10.1128/JVI.05549-11]
78. Qiu X, Alimonti JB, Melito PL, Fernando L, Ströher U, Jones SM. Characterization of Zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clin Immunol. 2011;141(2):218-27. [Link] [DOI:10.1016/j.clim.2011.08.008]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.