Volume 10, Issue 2 (2019)                   JMBS 2019, 10(2): 241-246 | Back to browse issues page

XML Persian Abstract Print


1- Biophysics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
2- Biophysics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. Postal Code: 1411713116 , taghdir@modares.ac.ir
Abstract:   (6076 Views)
Liposomes or biological vesicles are formed from cholesterol, phospholipids, and water. Also, sometimes other biological and non-biological molecules imported in the structure of liposome. The stability of the liposomes in the treatment of diseases and drug delivery, it is vitally important and can be influenced by the composition of phospholipid. In addition, the presence or absence of cholesterol may also affect the stability of liposome. Also, the formation of liposomes is affected by the presence or absence of cholesterol. In this study, we are seeking to affect the presence or absence of cholesterol on the stability and the formation of the liposome. For this purpose, the molecular dynamics simulation method is used. Liposomes that they are simulated was of two types of liposomes type I and liposome type II. The formation analyzes including radial distribution function and solvent accessible surface area showed that each of liposomes created. The type I liposome created one nanodisc structure and type II liposome created two nanodisc structures. Also, energy analysis including total energy, van der Waals interaction energy, and electrostatic interaction energy showed that type I liposome is more stable. Because the cholesterol molecules are the presence of in this liposome structure, that ability to gives hydrogen bonding with side lipids and an increase of stability. In addition, hydrophobic interactions between cholesterol and phospholipids as well as distribution and proper orientation of these parts play a major stake in the stability of the structure.
Full-Text [PDF 958 kb]   (3518 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2017/10/17 | Accepted: 2018/01/9 | Published: 2019/06/20

References
1. Perrie Y. Gregory Gregoriadis: Introducing liposomes to drug delivery. J Drug Target. 2008;16(7):518-9. [Link] [DOI:10.1080/10611860802228376]
2. Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48. [Link] [DOI:10.1016/j.addr.2012.09.037]
3. Davies JC, Geddes DM, Alton EW. Prospects for gene therapy in lung disease. Curr Opin Pharmacol. 2001;1(3):272-7. [Link] [DOI:10.1016/S1471-4892(01)00048-0]
4. Butts C, Murray N, Maksymiuk A, Goss G, Marshall E, Soulières D, et al. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol. 2005;23(27):6674-81. [Link] [DOI:10.1200/JCO.2005.13.011]
5. Chan PH, Longar S, Fishman RA. Protective effects of liposome-entrapped superoxide dismutase on posttraumatic brain edema. Ann Neurol. 1987;21(6):540-7. [Link] [DOI:10.1002/ana.410210604]
6. Miller AD. Cationic liposomes for gene therapy. Angewandte Chemie International Edition. 1998;37(13‐14):1768-85. https://doi.org/10.1002/(SICI)1521-3773(19980803)37:13/14<1768::AID-ANIE1768>3.0.CO;2-4 [Link] [DOI:10.1002/(SICI)1521-3773(19980803)37:13/143.0.CO;2-4]
7. Lee Y, Thompson DH. Stimuli-Responsive Liposomes for Drug Delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(5):10.1002/wnan.1450. [Link] [DOI:10.1002/wnan.1450]
8. Wagner A, Vorauer-Uhl K, Katinger H. Liposomes produced in a pilot scale: Production, purification and efficiency aspects. Eur J Pharm Biopharm. 2002;54(2):213-9. [Link] [DOI:10.1016/S0939-6411(02)00062-0]
9. Cheng X, Jo S, Lee HS, Klauda JB, Im W. CHARMM-GUI micelle builder for pure/mixed micelle and protein/micelle complex systems. J Chem Inf Model. 2013;53(8):2171-80. [Link] [DOI:10.1021/ci4002684]
10. Qi Y, Ingólfsson HI, Cheng X, Lee J, Marrink SJ, Im W. CHARMM-GUI martini maker for coarse-grained simulations with the martini force field. J Chem Theory Comput. 2015;11(9):4486-94. [Link] [DOI:10.1021/acs.jctc.5b00513]
11. Qi Y, Cheng X, Han W, Jo S, Schulten K, Im W. CHARMM-GUI PACE CG Builder for solution, micelle, and bilayer coarse-grained simulations. J Chem Inf Model. 2014;54(3):1003-9. [Link] [DOI:10.1021/ci500007n]
12. Templeton NS, Lasic DD, Frederik PM, Strey HH, Roberts DD, Pavlakis GN. Improved DNA: Liposome complexes for increased systemic delivery and gene expression. Nat Biotechnol. 1997;15(7):647-52. [Link] [DOI:10.1038/nbt0797-647]
13. Uemura A, Kimura S, Imanishi Y. Investigation on the interactions of peptides in the assembly of liposome and peptide by fluorescence. Biochimica et Biophysica Acta Biomembranes. 1983;729(1):28-34. [Link] [DOI:10.1016/0005-2736(83)90452-2]
14. Fassas A, Anagnostopoulos A. The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia. Leuk Lymphoma. 2005;46(6):795-802. [Link] [DOI:10.1080/10428190500052438]
15. Immordino ML, Dosio F, Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297-315. [Link]
16. Chng CP. Effect of simulation temperature on phospholipid bilayer-vesicle transition studied by coarse-grained molecular dynamics simulations. Soft Matter. 2013;9(30):7294-301. [Link] [DOI:10.1039/c3sm51038g]
17. Geers B, De Wever O, Demeester J, Bracke M, De Smedt SC, Lentacker I. Targeted liposome-loaded microbubbles for cell-specific ultrasound-triggered drug delivery. Small. 2013;9(23):4027-35. [Link] [DOI:10.1002/smll.201300161]
18. Akbarzadeh A, Rezaei Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: Classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. [Link] [DOI:10.1186/1556-276X-8-102]
19. Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today. 2003;8(24):1112-20. [Link] [DOI:10.1016/S1359-6446(03)02903-9]
20. Gabizon A, Goren D, Cohen R, Barenholz Y. Development of liposomal anthracyclines: From basics to clinical applications. J Control Release. 1998;53(1-3):275-9. [Link] [DOI:10.1016/S0168-3659(97)00261-7]
21. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81-98. [Link] [DOI:10.1016/j.ajps.2014.09.004]
22. Fan Y, Zhang Q. Development of liposomal formulations: From concept to clinical investigations. Asian J Pharm Sci. 2013;8(2):81-7. [Link] [DOI:10.1016/j.ajps.2013.07.010]
23. Briuglia ML, Rotella C, Mc Farlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res. 2015;5(3):231-42. [Link] [DOI:10.1007/s13346-015-0220-8]
24. Bhattacharya S, Haldar S. Interactions between cholesterol and lipids in bilayer membranes, role of lipid headgroup and hydrocarbon chain-backbone linkage. Biochimica et Biophysica Acta Biomembranes. 2000;1467(1):39-53. [Link] [DOI:10.1016/S0005-2736(00)00196-6]
25. Kloesch B, Gober L, Loebsch S, Vcelar B, Helson L, Steiner G. In vitro study of a liposomal curcumin formulation (Lipocurc™): Toxicity and biological activity in synovial fibroblasts and macrophages. In Vivo. 2016;30(4):413-9. [Link]
26. Flaminio MJBF, Borges AS, Nydam DV, Horohov DW, Hecker R, Matychak MB. The effect of CpG-ODN on antigen presenting cells of the foal. J Immune Based Ther Vaccines. 2007;5:1. [Link] [DOI:10.1186/1476-8518-5-1]
27. Zhang M, Charles R, Tong H, Zhang L, Patel M, Wang F, et al. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation. Sci Rep. 2015;5:8741. [Link] [DOI:10.1038/srep08741]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.