Volume 10, Issue 1 (2019)                   JMBS 2019, 10(1): 133-141 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jazaeri E, Mahdavi A, Abdoli A. Investigation of Immunization of DNA-Based Polyepitop HIV Vaccine Candidate in Mouse Model and the Impact of Alum Adjuvant and Subcutaneous Infusion on its Efficiency. JMBS 2019; 10 (1) :133-141
URL: http://biot.modares.ac.ir/article-22-14737-en.html
1- Biological Sciences Department, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
2- Biological Sciences Department, Institute for Advanced Studies in Basic Sciences, Zanjan Iran, Institute for Advanced Studies in Basic Sciences, NO.444, Professor Yousef Sobooti Boulevard, Gavazang, Zanjan, Iran , a.mahdavi@iasbs.ac.ir
3- Hepatitis & AIDS Department, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (7453 Views)
Aims: One of the challenges of today's world and also global health priorities is pandemicity of AIDS. Studies have shown that the scope and breadth of the immune responses induction are very effective to protect against HIV. Moreover, simultaneous induction of humoral and cellular immunity responses increases the effectiveness of candidate HIV vaccines. Hence, new approaches such as polyepitopic vaccine strategy and addition of different adjuvants in HIV vaccines’ formulations have been recently considered.
Materials and Methods: In the present study, eukaryotic expression vector (pcDNA3.1-tat/pol/gag/env) was transformed and amplified in the prokaryotic host cells E. coli (DH5α). After vector extraction, it was concentrated and formulated alone and in combination with Alum adjuvant and used as DNA candidate vaccines. DNA candidate vaccines were, then, subcutaneously injected to the BALB/c mice on 0, 14, and 28 days and elicited humoral and cellular immunity responses were finally evaluated.
Findings: The results showed that the candidate DNA vaccine could not efficiently induce immunity responses (both humoral and cellular responses) by subcutaneous route injection.
Conclusion: This observation can be due to a defect in each of the steps of vector harvesting by the target cell to express the surface presentation of the epitopes on the one hand, or the inefficiency of the subcutaneous injection method on the other. Therefore, other vaccines’ injection and deliveries routes along with addition of other adjuvants in vaccine’s formulations could induce immunity responses efficiently and increase vaccine efficacy.
Full-Text [PDF 674 kb]   (3703 Downloads)    
Article Type: _ | Subject: Agricultural Biotechnology
Received: 2017/02/8 | Accepted: 2017/07/4 | Published: 2019/03/16

References
1. National AIDS Committee Secretariat. Islamic Republic of Iran Aids progress report [Internet]. Tehran: Ministry of Health and Medical Education; 2014 [cited 2016 Dec 20]. Available from: http://bit.ly/2TTiCT4 [Link]
2. Barouch DH. Challenges in the development of an HIV-1 vaccine. Nature. 2008;455(7213):613-9. [Link] [DOI:10.1038/nature07352]
3. Bazhan SI, Belavin PA, Seregin SV, Danilyuk NK, Babkina IN, Karpenko LI, et al. Designing and engineering of DNA-vaccine construction encoding multiple CTL-epitopes of major HIV-1 antigens. Vaccine. 2004;22(13-14):1672-82. [Link] [DOI:10.1016/j.vaccine.2003.09.048]
4. Deeks SG, Lewin SR, Havlir DV. The end of AIDS: HIV infection as a chronic disease. Lancet. 2013;382(9903):1525-33. [Link] [DOI:10.1016/S0140-6736(13)61809-7]
5. Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA vaccine: Stepwise improvements make a difference. Vaccines (Basel). 2014;2(2):354-79. [Link] [DOI:10.3390/vaccines2020354]
6. Lavanya J, Saxena S, Jais M, Dutta R. DNA Vaccines-A Review. Jeevanu Times. 2013;13(1):12. [Link]
7. Liu MA. DNA vaccines: A review. J Intern Med. 2003;253(4):402-10. [Link] [DOI:10.1046/j.1365-2796.2003.01140.x]
8. Kindt TJ, Goldsby RA, Osborne BA, Kuby J. Kuby Immunology: W. H. Freeman; 2007. [Link]
9. Mutwiri G, Van Drunen Littel-Van Den Hurk S, Babiuk LA. Approaches to enhancing immune responses stimulated by CpG oligodeoxynucleotides. Adv Drug Deliv Rev. 2009;61(3):226-32. [Link] [DOI:10.1016/j.addr.2008.12.004]
10. O'Hagan DT. New-generation vaccine adjuvants. eLS. 2015 Jul. [Link]
11. Rosa DS, Ribeiro SP, Fonseca SG, Almeida RR, Santana VC, Apostólico Jde S, et al. Multiple approaches for increasing the immunogenicity of an epitope-based anti-HIV vaccine. AIDS Res Hum Retroviruses. 2015;31(11):1077-88. [Link] [DOI:10.1089/aid.2015.0101]
12. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: A laboratory manual. New York: Cold Spring Harbor Laboratory; 1989. [Link]
13. Barouch DH, Santra S, Steenbeke TD, Zheng XX, Perry HC, Davies ME, et al. Augmentation and suppression of immune responses to an HIV-1 DNA vaccine by plasmid cytokine/Ig administration. J Immunol. 1998;161(4):1875-82. [Link]
14. Jafarpour N, Memarnejadian A, Aghasadeghi MR, Kohram F, Aghababa H, Khoramabadi N, et al. Clustered epitopes within a new poly-epitopic HIV-1 DNA vaccine shows immunogenicity in BALB/c mice. Mol Biol Rep. 2014;41(8):5207-14. [Link] [DOI:10.1007/s11033-014-3388-y]
15. Kopycinski J, Cheeseman H, Ashraf A, Gill D, Hayes P, Hannaman D, et al. A DNA-based candidate HIV vaccine delivered via in vivo electroporation induces CD4 responses toward the α4β7-binding V2 loop of HIV gp120 in healthy volunteers. Clin Vaccine Immunol. 2012;19(9):1557-9. [Link] [DOI:10.1128/CVI.00327-12]
16. Mann JK, Ndung'u T. HIV-1 vaccine immunogen design strategies. Virol J. 2015;12:3. [Link] [DOI:10.1186/s12985-014-0221-0]
17. Mahdavi M, Ebtekar M, Mahboudi F, Khorram Khorshid H, Rahbarizadeh F, Azadmanesh K, et al. Immunogenicity of a new HIV-1 DNA construct in a BALB/c mouse model. Iran J Immunol. 2009;6(4):163-73. [Link]
18. Suhrbier A. Multi-epitope DNA vaccines. Immunol Cell Biol. 1997;75(4):402-8. [Link] [DOI:10.1038/icb.1997.63]
19. Thomson SA, Burrows SR, Misko IS, Moss DJ, Coupar BE, Khanna R. Targeting a polyepitope protein incorporating multiple class II-restricted viral epitopes to the secretory/endocytic pathway facilitates immune recognition by CD4+ cytotoxic T lymphocytes: A novel approach to vaccine design. J Virol. 1998;72(3):2246-52. [Link]
20. Korber BT, Letvin NL, Haynes BF. T-cell vaccine strategies for human immunodeficiency virus, the virus with a thousand faces. J Virol. 2009;83(17):8300-14. [Link] [DOI:10.1128/JVI.00114-09]
21. Arabi S, Aghasadeghi MR, Memarnejadian A, Kohram F, Aghababa H, Khoramabadi N, et al. Cloning, expression and purification of a novel multi-epitopic HIV-1 vaccine candidate: A preliminary study on immunoreactivity. Vaccine Res. 2014;1(1):10-5. [Link] [DOI:10.18869/acadpub.vacres.1.1.10]
22. Karpenko LI, Ilyichev AA, Eroshkin AM, Lebedev LR, Uzhachenko RV, Nekrasova NA, et al. Combined virus-like particle-based polyepitope DNA/protein HIV-1 vaccine design, immunogenicity and toxicity studies. Vaccine. 2007;25(21):4312-23. [Link] [DOI:10.1016/j.vaccine.2007.02.058]
23. Karpenko LI, Nekrasova NA, Ilyichev AA, Lebedev LR, Ignatyev GM, Agafonov AP, et al. Comparative analysis using a mouse model of the immunogenicity of artificial VLP and attenuated Salmonella strain carrying a DNA-vaccine encoding HIV-1 polyepitope CTL-immunogen. Vaccine. 2004;22(13-14):1692-9. [Link] [DOI:10.1016/j.vaccine.2003.09.050]
24. Reguzova A, Antonets D, Karpenko L, Ilyichev A, Maksyutov R, Bazhan S. Design and evaluation of optimized artificial HIV-1 poly-T cell-epitope immunogens. PLoS One. 2015;10(3):e0116412. [Link] [DOI:10.1371/journal.pone.0116412]
25. Mahdavi M, Ebtekar M, Azadmanesh K, Khorram Khorshid HR, Rahbarizadeh F, Yazdi MH, et al. HIV-1 Gag p24-Nef fusion peptide induces cellular and humoral immune response in a mouse model. Acta Virol. 2010;54(2):131-6. [Link] [DOI:10.4149/av_2010_02_131]
26. Eshghjoo S, Abdoli A, Khatami Sh, Noormohammadi Z. HIV polytope candidate vaccine formulation with n-trimethyl chitosan nanoparticles as a potent delivery system. Int J Ther Appl. 2015;21:1-11. [Link]
27. Caputo A, Gavioli R, Bellino S, Longo O, Tripiciano A, Francavilla V, et al. HIV-1 Tat-based vaccines: An overview and perspectives in the field of HIV/AIDS vaccine development. Int Rev Immunol. 2009;28(5):285-334. [Link] [DOI:10.1080/08830180903013026]
28. Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev. 2010;62(1):59-82. [Link] [DOI:10.1016/j.addr.2009.11.009]
29. Arca HÇ, Günbeyaz M, Şenel S. Chitosan-based systems for the delivery of vaccine antigens. Expert Rev Vaccines. 2009;8(7):937-53. [Link] [DOI:10.1586/erv.09.47]
30. Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines. 2011;10(4):499-511. [Link] [DOI:10.1586/erv.10.174]
31. Tritto E, Mosca F, De Gregorio E. Mechanism of action of licensed vaccine adjuvants. Vaccine. 2009;27(25-26):3331-4. [Link] [DOI:10.1016/j.vaccine.2009.01.084]
32. Krieg AM. Mechanisms and applications of immune stimulatory CpG oligodeoxynucleotides. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 1999;1489(1):107-16. [Link] [DOI:10.1016/S0167-4781(99)00147-5]
33. Hogen Esch H. Mechanisms of stimulation of the immune response by aluminum adjuvants. Vaccine. 2002;20 Suppl 3:S34-9. [Link] [DOI:10.1016/S0264-410X(02)00169-X]
34. Mohan T, Verma P, Nageswara Rao D. Novel adjuvants & delivery vehicles for vaccines development: A road ahead. Indian J Med Res. 2013;138(5):779-5. [Link]
35. Krieg AM. The role of CpG motifs in innate immunity. Curr Opin Immunol. 2000;12(1):35-43. [Link] [DOI:10.1016/S0952-7915(99)00048-5]
36. Marciani DJ. Vaccine adjuvants: Role and mechanisms of action in vaccine immunogenicity. Drug Discov Today. 2003;8(20):934-43. [Link] [DOI:10.1016/S1359-6446(03)02864-2]
37. Sarrami Forooshani R, Das SR, Sabahi F, Adeli A, Esmaeili R, Wahren B, et al. Molecular analysis and phylogenetic characterization of HIV in Iran. J Med Virol. 2006;78(7):853-63. [Link] [DOI:10.1002/jmv.20634]
38. Bornhorst JA, Falke JJ. Purification of proteins using polyhistidine affinity tags. In: Thorner J, Emr SD, Abelson JN, editors. Methods in enzymology, applications of chimeric genes and hybrid proteins part A: Gene expression and protein purification. 326th Volume. Amsterdam: Elsevier; 2000. pp. 245-54. [Link] [DOI:10.1016/S0076-6879(00)26058-8]
39. Jin X, Morgan C, Yu X, De Rosa S, Tomaras GD, Montefiori DC, et al. Multiple factors affect immunogenicity of DNA plasmid HIV vaccines in human clinical trials. Vaccine. 2015;33(20):2347-53. [Link] [DOI:10.1016/j.vaccine.2015.03.036]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.