Volume 9, Issue 1 (2018)                   JMBS 2018, 9(1): 123-129 | Back to browse issues page

XML Persian Abstract Print


1- Biology Department, Basic Sciences Faculty, Shahrekord University, Shahrekord, Iran, Post Address: Basic Sciences Faculty, Shahrekord University, Rahbar Boulevard, Shahrekord, Iran. , b_shareghi@yahoo.com
2- Biology Department, Sciences Faculty, University of Shahrekord, Shahrekord, Iran
Abstract:   (5922 Views)
Aims: Proteinase K is an extracellular endopeptidase, which is secreted by Tritirachium album Limber and belongs to the serine endopeptidase class. This enzyme is extensively applied to protein-related studies. The present study aimed at evaluating the effect of urea, guanidine hydrochloride (GnHCl), and organic solvents on the kinetic activity of proteinase K enzyme.
Materials and Methods: In this experimental study, kinetics studies were performed, using UV-Vis spectrophotometer on different concentrations of substrate, urea, and GnHCl at 40˚C and pH 7.4.
Findings: Urea decreased the Vmax and Km of enzyme at 1 and 2molar concentrations, but at higher concentrations such as 3 and 4molar, it increased enzyme activity. GnHCl had an inhibitory effect on the enzyme activity, resulting in a decrease in Vmax and Km in 1, 2, and 3molar concentrations and acted as an uncompetitive inhibitor. Organic solvents including methanol, ethanol, and isopropanol had activatory effect at low concentrations and inhibitory effect at high concentrations on the kinetic activity of proteinase K enzyme.
Conclusion: Urea has an inhibitory effect at low concentrations and an activatory effect on the activity of the enzyme at a concentrations above 2molar, but GnHCl has an inhibitory effect at all concentrations and can be used as an enzyme inhibitor. The effect of organic solvents including methanol, ethanol, and isopropanol on the activity of the proteinase K enzyme depends on their volume/volume percent; they cause enzyme activation at low percentages, but have inhibitory effect at high percentages, so that activates methanol below 30%  and isopropanol below 50%.
Full-Text [PDF 481 kb]   (4472 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 1901/12/14 | Accepted: 2017/10/23 | Published: 2018/03/20

References
1. Ebeling W, Hennrich N, Klockow M, Metz H, Orth HD, Lang H. Proteinase K from Tritirachium album limber. Eur J Biochem. 1974;47(1):91-7. [Link] [DOI:10.1111/j.1432-1033.1974.tb03671.x]
2. Hosseini Koupaei M, Shareghi B, Saboury AA, Davar F. Molecular investigation on the interaction of spermine with proteinase K by multispectroscopic techniques and molecular simulation studies. Int J Biol Macromol. 2017;94(Pt A):406-14. [Link]
3. Panek JJ, Mazzarello R, Novič M, Jezierska-Mazzarello A. Impact of Mercury (II) on proteinase K catalytic center: Investigations via classical and Born-Oppenheimer molecular dynamics. Mol Divers. 2011;15(1):215-26. [Link] [DOI:10.1007/s11030-010-9256-3]
4. Hosseini Koupaei M, Shareghi B, Saboury AA. Conjugation of biogenic polyamine (putrescine) with proteinase K: Spectroscopic and theoretical insights. Int J Biol Macromol. 2017;98:150-8. [Link] [DOI:10.1016/j.ijbiomac.2017.01.111]
5. Hosseini Koupaei M, Shareghi B, Saboury AA, Davar F, Semnani A, Evini M. Green synthesis of zinc oxide nanoparticles and their effect on the stability and activity of proteinase K. RSC Adv. 2016;6(48):42313-23. [Link] [DOI:10.1039/C5RA24862K]
6. Bajorath J, Hinrichs W, Saenger W. The enzymatic activity of proteinase K is controlled by calcium. Eur J Biochem. 1988;176(2):441-7. [Link] [DOI:10.1111/j.1432-1033.1988.tb14301.x]
7. Hosseini Koupaei M, Shareghi B, Saboury A, Davar F, Raisi F. The effect of spermidine on the structure, kinetics and stability of proteinase K: Spectroscopic and computational approaches. RSC Adv. 2016;6(107):105476-86. [Link] [DOI:10.1039/C6RA20975K]
8. Nooraei P, Shareghi B, Salavati Niasari M, Shahbazkia HR, Semnani A. Comparative studies on the interaction of proteinase-K with nano-CuO and copper ions. J Nanostruct. 2012;2(1):35-41. [Link]
9. Privalov PL, Crane-Robinson C. Role of water in the formation of macromolecular structures. Eur Biophys J. 2017;46(3):203-24. [Link] [DOI:10.1007/s00249-016-1161-y]
10. Canchi DR, García AE. Cosolvent effects on protein stability. Annu Rev Phys Chem. 2013;64:273-93. [Link] [DOI:10.1146/annurev-physchem-040412-110156]
11. Koops BC, Verheij HM, Slotboom AJ, Egmond MR. Effect of chemical modification on the activity of lipases in organic solvents. Enzyme Microb Technol. 1999;25(7):622-31. [Link] [DOI:10.1016/S0141-0229(99)00090-3]
12. Fernández M, Fragoso A, Cao R, Ba-os M, Ansorge-Schumacher M, Hartmeier W, et al. Functional properties and application in peptide synthesis of trypsin modified with cyclodextrin-containing dicarboxylic acids. J Mol Catal B, Enzym. 2004;31(1-3):47-52. [Link] [DOI:10.1016/j.molcatb.2004.07.007]
13. Stone LA, Jackson GS, Collinge J, Wadsworth JD, Clarke AR. Inhibition of proteinase K activity by copper (II) ions. Biochemistry. 2007;46(1):245-52. [Link] [DOI:10.1021/bi061646s]
14. Cornish-Bowden, A. Principles of enzyme kinetics. New York City: Elsevier; 1976. p. 14201760.- [Link]
15. Eisenthal, R, Danson MJ. Enzyme assays: A practical approachJournal ofBiochemistry and Biophysics. In: Eisenthal, R, Danson MJ editors. Enzyme Assays: A Practical Approach. Oxford: Oxford University Press; 2002. p. 257: 70-94. [Link]
16. Fink AL, Calciano LJ, Goto Y, Kurotsu T, Palleros DR. Classificationof acid denaturation of proteins: intermediates and unfolded states. Biochem. 1994;33(41):12504-11. [Link] [DOI:10.1021/bi00207a018]
17. Makhatadze GI, Privalov PL. Protein interactions with urea and guanidinium chloride, a calorimetric study. J Mol Biol. 1992;226(2):491-505. [Link] [DOI:10.1016/0022-2836(92)90963-K]
18. Barone G, Rizoo E, Vitagliano V. Opposite effect of urea and some of its derivatives on water structure. J Phys Chem. 1970;74(10):2230-2. [Link] [DOI:10.1021/j100909a037]
19. Courtenay ES, Capp MW, Record MT Jr. Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water-accessible surface area. Protein Sci. 2001;10(12):2485-97. [Link] [DOI:10.1110/ps.ps.20801]
20. Hilz H, Wiegers U, Adamietz P. Stimulation of proteinase K action by denaturing agents: Application to the isolation of nucleic acids and the degradation of 'masked' proteins. Eur J Biochem. 1975;56(1):103-8. [Link] [DOI:10.1111/j.1432-1033.1975.tb02211.x]
21. Bennion BJ, Daggett V. The molecular basis for the chemical denaturation of proteins by urea. Proc Natl Acad Sci U S A. 2003;100(9):5142-7. [Link] [DOI:10.1073/pnas.0930122100]
22. Tao Y, Rao ZH, Liu SQ. Insight derived from molecular dynamics simulation into substrate-induced changes in protein motions of proteinase K. J Biomol Struct Dyn. 2010;28(2):143-58. [Link] [DOI:10.1080/073911010010524953]
23. Harris JI. Effect of urea on trypsin and alpha-chymotrypsin. Nature. 1956;177(4506):471-3. [Link] [DOI:10.1038/177471a0]
24. Venkatesu P, Lee MJ, Lin HM. Thermodynamic characterization of the osmolyte effect on protein stability and the effect of GdnHCl on the protein denatured state. J Phys Chem B. 2007;111(30):9045-56. [Link] [DOI:10.1021/jp0701901]
25. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Living with water stress: Evolution of osmolyte systems. Science. 1982;217(4566):1214-22. [Link] [DOI:10.1126/science.7112124]
26. Raducan A, Cantemir AR, Puiu M, Oancea D. Kinetics of hydrogen peroxide decomposition by catalase: Hydroxylic solvent effects. Bioprocess Biosyst Eng. 2012;35(9):1523-30. [Link] [DOI:10.1007/s00449-012-0742-0]
27. Pittz EP, Timasheff SN. Interaction of ribonuclease A with aqueous 2-methyl-2,4-pentanediol at pH 5.8. Biochemistry. 1978;17(4):615-23. [Link] [DOI:10.1021/bi00597a009]
28. Sola-Penna M, Meyer-Fernandes JR. Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: Why is trehalose more effective than other sugars?. Arch Biochem Biophys. 1998;360(1):10-4. [Link] [DOI:10.1006/abbi.1998.0906]
29. Kumar A, Attri P, Venkatesu P. Effect of polyols on the native structure of α-chymotrypsin: A comparable study. Thermochimi Acta. 2012;536:55-62. [Link] [DOI:10.1016/j.tca.2012.02.027]
30. Tomar R, Dubey VK, Jagannadham MV. Effect of alkyl alcohols on partially unfolded state of proteinase K: Differential stability of α-helix and β-sheet rich regions of the enzyme. Biochimie. 2009;91(8):951-60. [Link] [DOI:10.1016/j.biochi.2009.04.013]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.