Volume 10, Issue 3 (2019)                   JMBS 2019, 10(3): 351-361 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi M, Ramazani A, Garmroodi M, Yousefi M, Yazdi A, Esfahani K. Resolution of Ibuprofen Enantiomers by Rhizomucor miehei Lipase (RML) Immobilized via Physical and Covalent Attachment. JMBS 2019; 10 (3) :351-361
URL: http://biot.modares.ac.ir/article-22-15424-en.html
1- Bioprocess Engineering Department, Institute of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
2- Chemistry Department, Sciences Faculty, University of Zanjan, Zanjan, Iran, Sciences Faculty, University of Zanjan, Daneshgah Boulevard, Zanjan, Iran. Mohammadi M: Bioprocess Engineering Department, Institute of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB , aliramazani@gmail.com, m.mohammadi@nigeb.ac.ir
3- Chemistry Department, Sciences Faculty, University of Zanjan, Zanjan, Iran
4- New Biotechnology Research Center, Ibn Sina Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
5- Young Researcher & Elite Club, East Tehran Branch, Islamic Azad University, Tehran, Iran
6- Plant Bioproducts Department, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
Abstract:   (6053 Views)
Ibuprofen, 4-isobutyl-propionic acid, is an important well-known member of NSAIDs which is widely utilized in inflammatory therapy like treatment of rheumatoid arthritis and various degrees of analgesic. Despite the high medical activity and low toxicity of ibuprofen, it is supplied as a racemic mixture. In this research enantioselective resolution of (R, S)-ibuprofen by immobilized preparations of Rhizomucor miehei lipase (RML) on silica and silica nanoparticles was investigated. For this, chemical modification of silica and silica mesoporous nanoparticles was performed by the simultaneous use of two coupling linkers; Octyltriethoxysilane (OTES) for hydrophobic interaction and glycidoxypropyltrimethoxylsilane (GPTMS) for covalent linkage of RML. The results showed that immobilization of RML on octyl-functionalized supports produces specific activity almost 1.5-2 folds greater than the specific activity of the free enzyme. The observed hyper-activation decreased with increasing epoxy groups on the supports confirming the enhancement of covalent nature of the attachment. Regarding the specific activity of the immobilized preparations and desorption percentages of RML from each support, the most suitable carrier obtained from the functionalization of the supports in the presence of GPTMS and OTES in the ratio of 1:1. The selected biocatalysts were then used for enantioselective resolution of (R, S)-ibuprofen by esterification reaction at different conditions. The results revealed that the most suitable biocatalysts are those prepared by immobilization of RML on SBA-15 and silica modified with GPTMS and OTES in the ratio of 1:1 which produced high E values at ambient temperature.
Full-Text [PDF 1002 kb]   (1903 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2017/09/4 | Accepted: 2018/01/1 | Published: 2019/09/21

1. Brugger R, Alía BG, Reichel C, Waibel R, Menzel S, Brune K, et al. Isolation and characterization of rat liver microsomal R-ibuprofenoyl-CoA synthetase. Biochem Pharmacol. 1996;52(7):1007-13. [Link] [DOI:10.1016/0006-2952(96)00415-7]
2. Habibi Z, Mohammadi M, Yousefi M. Enzymatic hydrolysis of racemic ibuprofen esters using Rhizomucor miehei lipase immobilized on different supports. Proc Biochem. 2013;48(4):669-76. [Link] [DOI:10.1016/j.procbio.2013.02.020]
3. Wang Y, Hu Y, Xu J, Luo G, Dai Y. 2007. Immobilization of lipase with a special microstructure in composite hydrophilic CA/hydrophobic PTFE membrane for the chiral separation of racemic ibuprofen. J Membr Sci. 2007;293(1-2):133-41. [Link] [DOI:10.1016/j.memsci.2007.02.006]
4. Hongwei Y, Jinchuan W, Chi Bun C. Kinetic resolution of ibuprofen catalyzed by Candida rugosa lipase in ionic liquids. Chirality. 2005;17(1):16-21. [Link] [DOI:10.1002/chir.20078]
5. Lievano R, Pérez HI, Manjarrez N, Solís A, Solís-Oba M. Hydrolysis of ibuprofen nitrile and ibuprofen amide and deracemisation of ibuprofen using Nocardia corallina B-276. Molecules. 2012;17(3):3148-54. [Link] [DOI:10.3390/molecules17033148]
6. Adams SS, Bresloff P, Mason CG. Pharmacological differences between the optical isomers of ibuprofen: evidence for metabolic inversion of the (-)‐isomer. J Pharm Pharmacol. 1976;28(3):256-7. [Link] [DOI:10.1111/j.2042-7158.1976.tb04144.x]
7. Arellano U, Shen JM, Wang JA, Timko MT, Chen LF, Rodríguez JTV, et al. Dibenzothiophene oxidation in a model diesel fuel using CuO/GC catalysts and H 2 O 2 in the presence of acetic acid under acidic condition. Fuel. 2015;149:15-25. [Link] [DOI:10.1016/j.fuel.2014.11.001]
8. Chávez‐Flores D, Salvador JM. Commercially viable resolution of ibuprofen. Biotechnol J. 2009;4(8):1222-4. [Link] [DOI:10.1002/biot.200900078]
9. José C, Toledo MV, Briand LE. Enzymatic kinetic resolution of racemic ibuprofen: past, present and future. Crit Rev Biotechnol. 2016;36(5):891-903. [Link] [DOI:10.3109/07388551.2015.1057551]
10. Jaeger KE, Eggert T. Lipases for biotechnology. Curr Opin Biotechnol. 2002;13(4):390-7. [Link] [DOI:10.1016/S0958-1669(02)00341-5]
11. Mehrasbi MR, Mohammadi J, Peyda M, Mohammadi M. Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil. Renew Energy. 2017;101:593-602. [Link] [DOI:10.1016/j.renene.2016.09.022]
12. Sheldon RA. Enzyme immobilization: the quest for optimum performance. Adv Synthesis Catalysis. 2007;349(8-9):1289-307. [Link] [DOI:10.1002/adsc.200700082]
13. Ghourchian H, Moulaie Rad A, Elyasvandi H. A conductometric urea biosensor by direct immobilization of urease on Pt electrode. Iran J Chem Chem Eng. 2004;23(2):55-63. [Link]
14. Alemzadeh I, Nejati S. Removal of phenols with encapsulated horseradish peroxidase in calcium alginate. Iran J Chem Chem Eng. 2009;28(2):43-9. [Link]
15. Garcia‐Galan C, Berenguer‐Murcia Á, Fernandez‐Lafuente R, Rodrigues RC. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synthesis Catalysis. 2011;353(6):2885-904. [Link] [DOI:10.1002/adsc.201100534]
16. Bastida A, Sabuquillo P, Armisen P, Fernandez-Lafuente R, Huguet J, Guisan JM. A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng. 1998;58(5):486-93. https://doi.org/10.1002/(SICI)1097-0290(19980605)58:5<486::AID-BIT4>3.0.CO;2-9 [Link] [DOI:10.1002/(SICI)1097-0290(19980605)58:53.0.CO;2-9]
17. Mohammadi M, Ashjari M, Garmroodi M, Yousefi M, Karkhane AA. The use of isocyanide-based multicomponent reaction for covalent immobilization of Rhizomucor miehei lipase on multiwall carbon nanotubes and graphene nanosheets. RSC Adv. 2016;6(76):72275-85. [Link] [DOI:10.1039/C6RA14142K]
18. Garmroodi M, Mohammadi M, Ramazani A, Ashjari M, Mohammadi J, Sabour B, et al. Covalent binding of hyper-activated Rhizomucor miehei lipase (RML) on hetero-functionalized siliceous supports. Int J Biol Macromol. 2016;86:208-15. [Link] [DOI:10.1016/j.ijbiomac.2016.01.076]
19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54. [Link] [DOI:10.1016/0003-2697(76)90527-3]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.