Volume 10, Issue 4 (2019)                   JMBS 2019, 10(4): 665-671 | Back to browse issues page

XML Persian Abstract Print


1- Toxicology Department, Medical Sciences Faculty, Tarbiat modares university, Tehran, Iran, Tarbiat Modares University, Nasr Bridge, Jalal-Al-Ahmad Highway, Tehran, Iran. Postal Code: 1411713116 , bdaraei@modares.ac.ir
2- Toxicology Department, Medical Sciences Faculty, Tarbiat modares university, Tehran, Iran
Abstract:   (4412 Views)
The stimulants are materials that increase alertness and reduce physical and mental fatigue. These drugs increase the activity of excitatory receptors and reduce the activity of inhibitory receptors in the central nervous system. Methamphetamine, also known as crystal, is a psychoactive substance. This drug is stimulating nerves and by a direct effect on the brain, mechanisms cause joy and excitement in people. Methamphetamine in low to moderate doses (5 to 30 mg) causes euphoria; excitement, increased heart rate, and blood pressure, mydriasis, increased body temperature and decrease appetite. High but non-lethal doses of methamphetamine cause mental disorders and psychotic symptoms, seizures, and rhabdomyolysis. Cardiovascular toxicity of methamphetamine-induced hypertension, arrhythmia, acute coronary syndrome and ischemic ventricular. The most important cellular mechanisms involved in the damage caused by Methamphetamine are oxidative stress, excitotoxicity, and mitochondrial damage. The synthesis of methamphetamine in illegal workshops mainly of six methods which are based on the raw materials are divided into two groups. Raw materials in the synthesis of methamphetamine are ephedrine and phenyl propanol. In reduction, methods involve Birch reduction, Nagai and hydrogenation Rosenmund ephedrine and pseudoephedrine are used as raw material, in Lockhart methods and amination reduction methods based on phenyl propanol as raw material.
Full-Text [PDF 464 kb]   (3678 Downloads)    
Article Type: Review | Subject: Agricultural Biotechnology
Received: 2017/09/17 | Accepted: 2018/10/9 | Published: 2019/12/19

References
1. Saberi Zafarghandi MB. Some of the challenges of mental health and addiction in Iran. Iran J Psychiatry Clin Psychol. 2011;17(2):157-61. [Persian] [Link]
2. Ray O. Drugs, society, and human behavior. 2nd Edition. London: Mosby; 1978. [Link]
3. Mehrpour O. Methamphetamin abuse a new concern in Iran. Daru. 2012;20(1):73. [Link] [DOI:10.1186/2008-2231-20-73]
4. Martin WR, Sloan JW, Sapira JD, Jasinski DR. Physiologic, subjective, and behavioral effects of amphetamine, methamphetamine, ephedrine, phenmetrazine, and methylphenidate in man. Clin Pharmacol Ther. 1971;12(2):245-58. [Link] [DOI:10.1002/cpt1971122part1245]
5. Anglin MD, Burke C, Perrochet B, Stamper E, Dawud-Noursi S. History of the methamphetamine problem. J Psychoactive Drugs. 2000;32(2):137-41. [Link] [DOI:10.1080/02791072.2000.10400221]
6. UNODC. World drug report [Internet]. New York: United Nations Publications; 2007 [cited 2018 Feb 25]. Available from: https://www.unodc.org/unodc/en/data-and-analysis/WDR-2007.html [Link]
7. UNODC. World drug report, volume 1: Analysis [Internet]. New York: United Nations Publications; 2004 [cited 2018 Feb 25]. Available from: https://www.unodc.org/unodc/en/data-and-analysis/WDR-2004.html [Link]
8. Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. Brain Res Rev. 2009;60(2):379-407. [Link] [DOI:10.1016/j.brainresrev.2009.03.002]
9. Karami MT, Etemadifard SM. Social structure of addiction in Iran. Iran J Soc Probl. 2011;1(4):93-110. [Persian] [Link]
10. Cruickshank CC, Dyer KR. A review of the clinical pharmacology of methamphetamine. Addiction. 2009;104(7):1085-99. [Link] [DOI:10.1111/j.1360-0443.2009.02564.x]
11. Karila L, Weinstein A, Aubin HJ, Benyamina A, Reynaud M, Batki SL. Pharmacological approaches to methamphetamine dependence: A focused review. Br J Clin Pharmacol. 2010;69(6):578-92. [Link] [DOI:10.1111/j.1365-2125.2010.03639.x]
12. Cook CE, Jeffcoat AR, Hill JM, Pugh DE, Patetta PK, Sadler BM, et al. Pharmacokinetics of methamphetamine self-administered to human subjects by smoking S-(+)-methamphetamine hydrochloride. Drug Metab Dispos. 1993;21(4):717-23. [Link]
13. Mendelson J, Uemura N, Harris D, Nath RP, Fernandez E, Jacob P, et al. Human pharmacology of the methamphetamine stereoisomers. Clin Pharmacol Ther. 2006;80(4):403-20. [Link] [DOI:10.1016/j.clpt.2006.06.013]
14. Volkow ND, Fowler JS, Wang GJ, Shumay E, Telang F, Thanos PK, et al. Distribution and pharmacokinetics of methamphetamine in the human body: Clinical implications. PLoS One. 2010;5(12):e15269. [Link] [DOI:10.1371/journal.pone.0015269]
15. Robinson ES, Eagle DM, Mar AC, Bari A, Banerjee G, Jiang X, et al. Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology. 2008;33(5):1028-37. [Link] [DOI:10.1038/sj.npp.1301487]
16. Lee B, London ED, Poldrack RA, Farahi J, Nacca A, Monterosso JR, et al. Striatal dopamine d2/d3 receptor availability is reduced in methamphetamine dependence and is linked to impulsivity. J Neurosci. 2009;29(47):14734-40. [Link] [DOI:10.1523/JNEUROSCI.3765-09.2009]
17. Thanos PK, Kim R, Delis F, Rocco MJ, Cho J, Volkow ND. Effects of chronic methamphetamine on psychomotor and cognitive functions and dopamine signaling in the brain. Behav Brain Res. 2017;320:282-90. [Link] [DOI:10.1016/j.bbr.2016.12.010]
18. Logan BK. Methamphetamine - effects on human performance and behavior. Forensic Sci Rev. 2002;14(1-2):133-51. [Link]
19. Yu Q, Larson DF, Watson RR. Heart disease, methamphetamine and AIDS. Life Sci. 2003;73(2):129-40. [Link] [DOI:10.1016/S0024-3205(03)00260-1]
20. Ebrahimian Z, Karimi Z, Khoshnoud MJ, Namavar MR, Daraei B, Haidari MR. Behavioral and stereological analysis of the effects of intermittent feeding diet on the orally administrated MDMA ("ecstasy") in mice. Innov Clin Neurosci. 2017;14(1-2):40-52. [Link]
21. Elkashef A, Vocci F, Hanson G, White J, Wickes W, Tiihonen J. Pharmacotherapy of methamphetamine addiction: An update. Subst Abus. 2008;29(3):31-49. [Link] [DOI:10.1080/08897070802218554]
22. Nordahl TE, Salo R, Leamon M. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: A review. J Neuropsychiatry Clin Neurosci. 2003;15(3):317-25. [Link] [DOI:10.1176/jnp.15.3.317]
23. Daraei B, Pourahmad J , Hamidi Pour N, Hosseini MJ, Shaki F, Soleimani M. Uranyl acetate induces oxidative stress and mitochondrial membrane potential collapse in the human dermal fibroblast primary cells. Iran J Pharm Res. 2012;11(2):495-501. [Link]
24. Yu S, Zhu L, Shen Q, Bai X, Di X. Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol. 2015;2015:103969. [Link] [DOI:10.1155/2015/103969]
25. Villemagne V, Yuan J, Wong DF, Dannals RF, Hatzidimitriou G, Mathews WB, et al. Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: Evidence from [11C]WIN-35,428 positron emission tomography studies and direct in vitro determinations. J Neurosci. 1998;18(1):419-27. [Link] [DOI:10.1523/JNEUROSCI.18-01-00419.1998]
26. Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM. Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther. 2004;311(1):1-7. [Link] [DOI:10.1124/jpet.104.070961]
27. Smith LM, La Gasse LL, Derauf C, Grant P, Shah R, Arria A, et al. The infant development, environment, and lifestyle study: Effects of prenatal methamphetamine exposure, polydrug exposure, and poverty on intrauterine growth. Pediatrics. 2006;118(3):1149-56. [Link] [DOI:10.1542/peds.2005-2564]
28. Smith LM, Santos LS. Prenatal exposure: The effects of prenatal cocaine and methamphetamine exposure on the developing child. Birth Defects Res C Embryo Today. 2016;108(2):142-6. [Link] [DOI:10.1002/bdrc.21131]
29. McDonnell-Dowling K, Donlon M, Kelly JP. Methamphetamine exposure during pregnancy at pharmacological doses produces neurodevelopmental and behavioral effects in rat offspring. Int J Dev Neurosci. 2014;35:42-51. [Link] [DOI:10.1016/j.ijdevneu.2014.03.005]
30. Yamamoto BK, Zhu W. The effects of methamphetamine on the production of free radicals and oxidative stress. J Pharmacol Exp Ther. 1998;287(1):107-14. [Link]
31. Bowyer JF, Robinson B, Ali S, Schmued LC. Neurotoxic-related changes in tyrosine hydroxylase, microglia, myelin, and the blood-brain barrier in the caudate-putamen from acute methamphetamine exposure. Synapse. 2008;62(3):193-204. [Link] [DOI:10.1002/syn.20478]
32. Padgett CL, Lalive AL, Tan KR, Terunuma M, Munoz MB, Pangalos MN, et al. Methamphetamine-evoked depression of GABA(B) receptor signaling in GABA neurons of the VTA. Neuron. 2012;73(5):978-89. [Link] [DOI:10.1016/j.neuron.2011.12.031]
33. Davidson C, Gow AJ, Lee TH, Ellinwood EH. Methamphetamine neurotoxicity: Necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Brain Res Rev. 2001;36(1):1-22. [Link] [DOI:10.1016/S0165-0173(01)00054-6]
34. Riezzo I, Fiore C, De Carlo D, Karch SB, Neri M, Turillazi TE, et al. The role of oxidative stress in methamphetamine and MDMA-induced toxicity. Mini Rev Org Chem. 2013;10(4):349-59. [Link] [DOI:10.2174/1570193X113106660029]
35. Cisneros IE, Ghorpade A. HIV-1, methamphetamine and astrocyte glutamate regulation: Combined excitotoxic implications for neuro-AIDS. Curr HIV Res. 2012;10(5):392-406. [Link] [DOI:10.2174/157016212802138832]
36. Amani N, Soodi M, Daraei B, Dashti A. Chlorpyrifos toxicity in mouse cultured cerebellar granule neurons at different stages of development: Additive effect on glutamate-induced excitotoxicity. Cell J. 2016;18(3):464-72. [Link]
37. Thomas DM, Kuhn DM. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Res. 2005;1050(1-2):190-8. [Link] [DOI:10.1016/j.brainres.2005.05.049]
38. Tata DA, Yamamoto BK. Chronic stress enhances methamphetamine-induced extracellular glutamate and excitotoxicity in the rat striatum. Synapse. 2008;62(5):325-36. [Link] [DOI:10.1002/syn.20497]
39. Martins T, Burgoyne T, Kenny BA, Hudson N, Futter CE, Ambrósio AF, et al. Methamphetamine-induced nitric oxide promotes vesicular transport in blood-brain barrier endothelial cells. Neuropharmacology. 2013;65:74-82. [Link] [DOI:10.1016/j.neuropharm.2012.08.021]
40. Sheng P, Cerruti C, Ali S, Cadet JL. Nitric oxide is a mediator of methamphetamine (METH)-induced neurotoxicity, in vitro evidence from primary cultures of mesencephalic cells. Ann N Y Acad Sci. 1996;801:174-86. [Link] [DOI:10.1111/j.1749-6632.1996.tb17440.x]
41. Tata DA, Yamamoto BK. Interactions between methamphetamine and environmental stress: Role of oxidative stress, glutamate and mitochondrial dysfunction. Addiction. 2007;102 Suppl 1:49-60. [Link] [DOI:10.1111/j.1360-0443.2007.01770.x]
42. Shin EJ, Shin SW, Nguyen TT, Park DH, Wie MB, Jang CG, et al. Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cδ gene. Mol Neurobiol. 2014;49(3):1400-21. [Link] [DOI:10.1007/s12035-013-8617-1]
43. Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, et al. Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci. 2008;28(22):5756-61. [Link] [DOI:10.1523/JNEUROSCI.1179-08.2008]
44. Windahl KL, Mc Tigue MJ, Pearson JR, Pratt SJ, Rowe JE, Sear EM. Investigation of the impurities found in methamphetamine synthesised from pseudoephedrine by reduction with hydriodic acid and red phosphorus. Forensic Sci Int. 1995;76(2):97-114. [Link] [DOI:10.1016/0379-0738(95)01803-4]
45. Remberg B, Stead AH. Drug characterization/impurity profiling, with special focus on methamphetamine: Recent work of the United Nations International Drug Control Programme. Bull Narc. 1999;LI(1-2):97-117. [Link]
46. Verweij AM. Impurities in illicit drug preparations: Amphetamine and methamphetamine. Forensic Sci Rev. 1989;1(1):1-11. [Link]
47. Lambrechts M, Klemetsrud T, Rasmussen KE, Storesund HJ. Analysis of Leuckart-specific impurities in amphetamine and methamphetamine. J Chromatogr A. 1984;284:499-502. [Link] [DOI:10.1016/S0021-9673(01)87855-9]
48. Lambrechts M, Rasmussen KE. Leuckart-specific impurities in amphetamine and methamphetamine seized in Norway. Bull Narc. 1984;36(1):47-57. [Link]
49. Tsujikawa K, Mikuma T, Kuwayama K, Miyaguchi H, Kanamori T, Iwata YT, et al. Profiling of seized methamphetamine putatively synthesized by reductive amination of 1-phenyl-2-propanone. Forensic Toxicol. 2012;30(1):70-5. [Link] [DOI:10.1007/s11419-011-0119-0]
50. Kunalan V, Nic Daéid N, Kerr WJ, Buchanan HAS, Mc Pherson AR. Characterization of route specific impurities found in methamphetamine synthesized by the Leuckart and reductive amination methods. Anal Chem. 2009;81(17):7342-8. [Link] [DOI:10.1021/ac9005588]
51. Person EC, Meyer JA, Vyvyan JR. Structural determination of the principal byproduct of the lithium-ammonia reduction method of methamphetamine manufacture. J Forensic Sci. 2005;50(1):87-95. [Link] [DOI:10.1520/JFS2004204]
52. Weisheit R. Making methamphetamine. South Rural Sociol. 2008;23(2):78-107. [Link]
53. Ko BJ, Suh S, Suh YJ, In MK, Kim SH. The impurity characteristics of methamphetamine synthesized by Emde and Nagai method. Forensic Sci Int. 2007;170(2-3):142-7. [Link] [DOI:10.1016/j.forsciint.2007.03.029]
54. Lee JS, Han EY, Lee SY, Kim EM, Park YH, Lim MA, et al. Analysis of the impurities in the methamphetamine synthesized by three different methods from ephedrine and pseudoephedrine. Forensic Sci Int. 2006;161(2-3):209-15. [Link] [DOI:10.1016/j.forsciint.2006.02.054]
55. Inoue H, Iwata YT, Kuwayama K. Characterization and profiling of methamphetamine seizures. J Health Sci. 2008;54(6):615-22. [Link] [DOI:10.1248/jhs.54.615]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.