Volume 10, Issue 1 (2019)                   JMBS 2019, 10(1): 143-150 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nasre Taheri M, Ebrahimipour G, Sadeghi H. Investigation of Organic Solvents-Resistant Extracellular Alkaline Protease from Brevibacillus borstelensis AMN Isolated from Hot Spring of Iran. JMBS 2019; 10 (1) :143-150
URL: http://biot.modares.ac.ir/article-22-15930-en.html
1- Microbiology Department, Biological Sciences Faculty, Shahid Beheshti University, Tehran, Iran, Microbiology Department, Biological Sciences Faculty, Shahid Beheshti University, Tehran, Iran , mnasretaheri@yahoo.com
2- Microbiology Department, Biological Sciences Faculty, Shahid Beheshti University, Tehran, Iran
Abstract:   (7281 Views)
The Stability of protease in organic solvent media has been widely discussed for more than two decades. Proteases can catalyze synthetic reactions in organic media, by this way solvent stabilities of proteases are very important. In this study, we reported a bacterium isolated from hot spring of Geinarje, Iran producing an organic solvent stable protease. Protease producing bacteria were screened on skim milk agar and the formation of a clear zone around the bacterial colony was investigated. Proteolytic activity was assayed by a modified caseinolytic method using casein as a substrate. The best alkaline protease producing bacterium was selected and identified on the basis of 16S rDNA gene sequencing and morphological and biochemical characteristics. The effect of organic solvents, temperature, pH, and NaCl on proteolytic activity were examined. According to phylogenetic analysis, morphological and physiological tests, isolated, the bacterium was identified as a new strain of Brevibacillus borstelensis. This strain was able to produce an extracellular organic solvent-stable protease with 0.53U/ml enzyme activity. After 2 hour incubation at 30°C the protease of Brevibacillus borstelensis AMN was active in wide ranges of organic solvents, and its activity was enhanced in the presence of 25% (V/V) isopropanol. The biochemical properties of the enzyme revealed that the optimal pH and temperature for protease activity were 9.0 and 60°C, respectively. Our finding indicated that these robust properties of protease, like outstanding activity and stability in organic solvents and alkaline medium, might be applicable for various industrial biotechnologies.
 
Full-Text [PDF 764 kb]   (3646 Downloads)    
Article Type: Research Paper | Subject: Agricultural Biotechnology
Received: 2017/05/9 | Accepted: 2018/01/1 | Published: 2019/03/16

References
1. Pant G, Prakash A, Pavani JVP, Bera S, Deviram GVNS, Kumar A, et al. Production, optimization and partial purification of protease from Bacillus subtilis. J Taibah Univ Sci. 2015;9(1):50-5. [Link] [DOI:10.1016/j.jtusci.2014.04.010]
2. Uyar F, Porsuk I, Kizil G, Yilmaz EI. Optimal conditions for production of extracellular protease from newly isolated Bacillus cereus strain CA15. Eurasian J Biosci. 2011;5(1):1-9. [Link] [DOI:10.5053/ejobios.2011.5.0.1]
3. Bizuye A, Sago A, Admasu G, Getachew H, Kassa P, Amsaya M. Isolation, optimization and characterization of protease producing bacteria from soil and water in Gondar town, North West Ethiopia. Int J Bacteriol Virol Immunol. 2014;1(3):020-4. [Link]
4. Radha S, Nithya VJ, Himakiran Babu R, Sridevi A, Prasad N, Narasimha G. Production and optimization of acid protease by Aspergillus spp under submerged fermentation. Arch Appl Sci Res. 2011;3(2):155-63. [Link]
5. Raval VH, Pillai S, Rawal CM, Singh SP. Biochemical and structural characterization of a detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochem. 2014;49(6):955-62. [Link] [DOI:10.1016/j.procbio.2014.03.014]
6. Jisha VN, Smitha RB, Pradeep S, Sreedevi S, Unni KN, Sajith S, et al. Versatility of microbial proteases. Adv Enzyme Res. 2013;1(3):39-51. [Link] [DOI:10.4236/aer.2013.13005]
7. Shafee N, Aris SN, Raja Noor Zaliha Abd Rahman, Basri M, Salleh AB. Optimization of environmental and nutritional conditions for the production of alkaline protease by a newly isolated bacterium Bacillus cereus strain 146. J Appl Sci Res. 2005;1(1):1-8. [Link]
8. Singhal P, Nigam VK, Vidyarthi AS. Studies on production, characterization and applications of microbial alkaline proteases. Int J Adv Biotechnol Res. 2012;3(3):653-69. [Link]
9. Moreno B, Vivas A, Nogales R, Benitez E. Solvent tolerance acquired by Brevibacillus brevis during an olive-waste vermicomposting process. Ecotoxicol Environ Saf. 2009;72(8):2109-14. [Link] [DOI:10.1016/j.ecoenv.2009.06.011]
10. Li GY, Cai YJ, Liao XR, Yin J. A novel nonionic surfactant- and solvent-stable alkaline serine protease from Serratia sp. SYBC H with duckweed as nitrogen source: Production, purification, characteristics and application. J Ind Microbiol Biotechnol. 2011;38(7):845-53. [Link] [DOI:10.1007/s10295-010-0855-x]
11. Annamalai N, Rajeswari MV, Balasubramanian T. Extraction, purification and application of thermostable and halostable alkaline protease from Bacillus alveayuensis CAS 5 using marine wastes. Food Bioprod Process. 2014;92(4):335-42. [Link] [DOI:10.1016/j.fbp.2013.08.009]
12. Doukyu N, Ogino H. Organic solvent-tolerant enzymes. Biochem Eng J. 2010;48(3):270-82. [Link] [DOI:10.1016/j.bej.2009.09.009]
13. Ben Elhoul M, Zaraî Jaouadi N, Rekik H, Bejar W, Boulkour Touioui S, Hmidi M, et al. A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650. Int J Biol Macromol. 2015;79:871-82. [Link] [DOI:10.1016/j.ijbiomac.2015.06.006]
14. Ogino H, Watanabe F, Yamada M, Nakagawa S, Hirose T, Noguchi A, et al. Purification and characterization of organic solvent-stable protease from organic solvent-tolerant Pseudomonas aeruginosa PST-01. J Biosci Bioeng. 1999;87(1):61-8. [Link] [DOI:10.1016/S1389-1723(99)80009-7]
15. Thumar J, Singh SP. Two-step purification of a highly thermostable alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;854(1-2):198-203. [Link] [DOI:10.1016/j.jchromb.2007.04.023]
16. Donohue TM Jr, Osna NA. Intracellular proteolytic systems in alcohol-induced tissue injury. Alcohol Res Health. 2003;27(4):317-24. [Link]
17. Kamran A, Ur Rehman H, Ul Qader SA, Baloch AH, Kamal M. Purification and characterization of thiol dependent, oxidation-stable serine alkaline protease from thermophilic Bacillus sp. J Genet Eng Biotechnol. 2015;13(1):59-64. [Link] [DOI:10.1016/j.jgeb.2015.01.002]
18. Anandharaj M, Sivasankari B, Siddharthan N, Rani RP, Sivakumar S. Production, purification, and biochemical characterization of thermostable metallo-protease from novel Bacillus alkalitelluris TWI3 isolated from tannery waste. Appl Biochem Biotechnol. 2016;178(8):1666-86. [Link] [DOI:10.1007/s12010-015-1974-7]
19. Annamalai N, Rajeswari MV, Thavasi R, Vijayalakshmi S, Balasubramanian T. Optimization, purification and characterization of novel thermostable, haloalkaline, solvent stable protease from Bacillus halodurans CAS6 using marine shellfish wastes: A potential additive for detergent and antioxidant synthesis. Bioprocess Biosyst Eng. 2013;36(7):873-83. [Link] [DOI:10.1007/s00449-012-0820-3]
20. Wang Sh, Lin X, Huang X, Zheng L, Zilda DS. Screening and characterization of the alkaline protease isolated from PLI-1, a strain of Brevibacillus sp. collected from Indonesia's hot springs. J Ocean Univ China. 2012;11(2):213-8. [Link] [DOI:10.1007/s11802-012-1845-6]
21. Kuberan T, Sangaralingam S, Thirumalai Arasu V. Isolation and optimization of protease producing bacteria from halophilic soil. J Biosci Res. 2010;1(3):163-74. [Link]
22. Ibrahim ASS, Al-Salamah AA, Elbadawi YB, El-Tayeb MA, Ibrahim SSS. Production of extracellular alkaline protease by new halotolerant alkaliphilic Bacillus sp. NPST-AK15 isolated from hyper saline soda lakes. Electron J Biotechnol. 2015;18(3):236-43. [Link] [DOI:10.1016/j.ejbt.2015.04.001]
23. El Hadj-Ali N, Agrebi R, Ghorbel-Frikha B, Sellami-Kamoun A, Kanoun S, Nasri M. Biochemical and molecular characterization of a detergent stable alkaline serine-protease from a newly isolated Bacillus licheniformis NH1. Enzyme Microb Technol. 2007;40(4):515-23. [Link] [DOI:10.1016/j.enzmictec.2006.05.007]
24. Zhang M, Zhao C, Du L, Lu F, Gao C. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis. Sci China C Life Sci. 2008;51(1):52-9. [Link] [DOI:10.1007/s11427-008-0009-9]
25. Ganesh Kumar C, Joo HS, Koo YM, Paik SR, Chang CS. Thermostable alkaline protease from a novel marine haloalkalophilic Bacillus clausii isolate. World J Microbiol Biotechnol. 2004;20(4):351-7. [Link] [DOI:10.1023/B:WIBI.0000033057.28828.a7]
26. Lazim H, Mankai H, Slama N, Barkallah I, Limam F. Production and optimization of thermophilic alkaline protease in solid-state fermentation by Streptomyces sp. CN902. J Ind Microbiol Biotechnol. 2009;36(4):531-7. [Link] [DOI:10.1007/s10295-008-0523-6]
27. Verma A, Ansari MW, Anwar MS, Agrawal R, Agrawal S. Alkaline protease from Thermoactinomyces sp. RS1 mitigates industrial pollution. Protoplasma. 2014;251(3):711-8. [Link] [DOI:10.1007/s00709-013-0559-y]
28. Maruthiah T, Esakkiraj P, Prabakaran G, Palavesam A, Immanuel G. Purification and characterization of moderately halophilic alkaline serine protease from marine Bacillus subtilis AP-MSU 6. Biocatal Agric Biotechnol. 2013;2(2):116-9. [Link] [DOI:10.1016/j.bcab.2013.03.001]
29. Arulmani M, Aparanjini K, Vasanthi K, Arumugam P, Arivuchelvi M, Thangavelu Kalaichelvan P. Purification and partial characterization of serine protease from thermostable alkalophilic Bacillus laterosporus-AK1. World J Microbiol Biotechnol. 2007;23(4):475-81. [Link] [DOI:10.1007/s11274-006-9249-7]
30. Kalisz HM. Microbial proteinases. In: Arnaud A. Enzyme studies. Berlin: Springer; 1988. pp. 1-65. [Link] [DOI:10.1007/BFb0047944]
31. Annamalai N, Rajeswari MV, Sahu SK, Balasubramanian T. Purification and characterization of solvent stable, alkaline protease from Bacillus firmus CAS 7 by microbial conversion of marine wastes and molecular mechanism underlying solvent stability. Process Biochem. 2014;49(6):1012-9. [Link] [DOI:10.1016/j.procbio.2014.03.007]
32. Kembhavi AA, Kulkarni A, Pant A. Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM no. 64. Appl Biochem Biotechnol. 1993;38(1-2):83-92. [Link] [DOI:10.1007/BF02916414]
33. Ogino H, Ishikawa H. Enzymes which are stable in the presence of organic solvents. J Biosci Bioeng. 2001;91(2):109-16. [Link] [DOI:10.1016/S1389-1723(01)80051-7]
34. Wang SL, Yang CH, Liang TW, Yen YH. Optimization of conditions for protease production by Chryseobacterium taeanense TKU001. Bioresour Technol. 2008;99(9):3700-7. [Link] [DOI:10.1016/j.biortech.2007.07.036]
35. Doddapaneni KK, Tatineni R, Vellanki RN, Rachcha S, Anabrolu N, Narakuti V, et al. Purification and characterization of a solvent and detergent-stable novel protease from Bacillus cereus. Microbiol Res. 2009;164(4):383-90. [Link] [DOI:10.1016/j.micres.2007.04.005]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.